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DESIGN OF COMPUTATIONAL  ALGORITHMS FOR 
OPTIMAL CONTROL BY HILBERT  SPACE METHODS 

SUMMARY 

A new classification of computational  methods  for  optimal  control 
problems is given  that  includes  the first variation  methods of steepest  descent, 
quasilinearization,  boundary  condition  iteration,  and  the  second  variation 
method.  The  classification is based on viewing  the  solutions as a sequence 
of approximate  control  functions  in  the  control  space U,  a sequence of approxi- 
mate  adjoint  functions  corresponding  to  linear  functionals  in  the  dual  space 
X:: , o r  a sequence of approximate  state  functions  in the state space, X. 

Three new computational  algorithms  for  optimal  control  problems are 
developed,  each  belonging  to  one of the  above  categories.  The first is based 
on Approximation  in X:: and is an  extension of the  quasi-Newton  methods  to 
boundary  condition  iteration. In contrast  to  former  second-order  methods 
for  boundary  condition  iteration  involving  the  Newton-Raphson  method,  the 
inverse  Jacobian  matrix of second  partial  derivatives is obtained by iteration. 
Only first   partial   derivatives of the  cost  functional are required,  and a 
detailed  technique for obtaining  these  derivatives is given. 

The  second is based on Approximation  in U. Concepts of asymptotic 
stability  and  Hamilton-Jacobi  theory a r e  used  to  obtain a sequence of func- 
tionals  convergent  to  the  optimal  cost  and which specify a minimizing  sequence 
of control  functions  for  the  cost  functional. A detailed  algorithm  for  the  state 
regulator  problem is given.  The  control  sequence is obtained by solving  linear 
equations  instead of nonlinear  Riccati  equations  and  possesses both  monotonic 
and  quadratic  convergence. Numerical studies  indicate  that  the  algorithm is 
preferable  to  existing  techniques,  including  Runge-Kutta  integration of the 
Riccati  equations  and  the  Automatic  Synthesis  Program (ASP).  

The  third is based on Approximation  in X and  exploits  the  concept of 
an  inverse  mapping of X into U. A second  variation  algorithm is formulated, 
and a detailed  solution  for  the  resulting  boundary  value  problem is given. 
A s  an  important  special case the state regulator  problem is treated,  and  an 
approximation  to  the  optimal  control is obtained.  Comparison  with  the  existing 
techniques  involving  the  second  variation  indicates  reduced  computational 
requirements  for  problems  in which  the  Euclidean  dimension of U is less than 
that of X. 



A number of computational  examples  demonstrate  the  application of 
the new algorithms,  and  comparisons  are  made with  the  exact  solutions. 

Finally, we obtain  the  solution  to a class  of state  regulator  problems. 
These  problems  involve  first-order  time-varying  systems  and  are  designed 
for testing  computational  algorithms. 
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CHAPTER 1 

I NTRODUCT I ON 

Statement of Problem  and  Research  Objectives 

The  development of the Maximum Principle by Pontryagin  and  his 
colleagues  in the 1950's is acknowledged as one of the  most  significant  results 
in  modern  control  theory.  The  method is a culmination of research  into  the 
Calculus of Variations by Bliss and  the  llChicago  school"  more  than 20 years  
earlier, and  provides  necessary  (and  often  sufficient)  conditions  for  an 
optimum.  During  the past 10 years,  considerable  effort  has  been  devoted  to 
exploiting  the  Maximum  Principle  for  the  design of computational  algorithms 
for  the  numerical  solution of control  problems. 

A more  fundamental  approach is through  the  application of "functional 
analysis"  and  the  concept of minimizing a linear  functional on a normed  linear 
vector  space.  Pontryagin,  in  fact,  used  these  tools  in  the proof of his  cele- 
brated  result.  The  abstraction of the  vector  space  approach  yields greater 
insight  into  the  problem  structure,  and  the  geometric  character of the  results 
provides a unified framework for further  extensions. 

Basically  the  optimal  control  problem  consists of the  following  items: 
a cost  functional J to  be  minimized;  dynamical  system  constraints  described 
by differential,  difference, or  integral  equations  relating  the state x  and  contol 
u; and  constraints on the  domain  and  range of these  functions.  A  control u is 
said  to be  optimal if  J is minimized  and  the  constraints are satisfied.  Through- 
out this  report we  assume that x and u belong  to bounded  open se t s  X and U,  
respectively, which a re   subse ts  of infinite  dimensional  Hilbert  space.  The 
system  dynamics wi l l  be  modeled by nonlinear  ordinary  differential  equations. 
Terininal  equality  constraints on the state and  unspecified  terminal  time wi l l  
be considered. 

A computationai  solution  to  the  optimal  control  problem  stated  above 
may  be  obtained by the  following  alternate  viewpoints: (1) Approximation  in 
U - choosing a sequence of approximate  control  functions  in U by expressing 
the state in X as a bounded linear  mapping of U into X and  employing  adjoint 
functions  (representing  elements  in X:::) to  determine  the  mapping, ( 2 )  Approxi- 
mation  in X:: - choosing a sequence of approximate  adjoint  functions  which 
correspond  to  linear  functionals  in X:::, (3) Approximation  in X - choosing a 
sequence of approximate  state  functions  in X, provided  that a mapping of X 
into U can  be found. 

3 



The first objective of this  research is to  classify  previous  computational 
methods  for  optimal  control  problems  according  to  the  above  scheme.  The 
second  objective is to  formulate  the  optimal  control  problem as Approximation 
in X by carefl development of an  "inverse"  mapping of X into U. The last 
objective of the  study is to  develop new algorithms  in  each of the  three  cate- 
gories  and  demonstrate  their  application by computational  examples. 

Organization of the Report 

In Chapter 1, the  problem  and  research  objectives  are  stated,  and 
the  organization of the  report is presented.  Basic  terminology and  definitions 
are introduced. 

In Chapter 2 ,  the  optimal  control  problem is defined,  and  assumptions 
are given.  Using  basic  concepts  from  the  theory of linear  vector  spaces 
(linear  operators,  Frechet  differentials,  adjoints,  etc. ) necessary  conditions 
for a minimum of J on X x U x T are  derived. A s  an  example,  the state 
regulator  problem is reviewed,  and known results are obtained  and  discussed. 

In Chapter 3 ,  the  computational  solution of the  optimal  control  problem 
is treated as Approximation  in X:k and U. These two categories are treated 
together  because of their  natural  dependence on the  necessary  conditions  for 
an optimal  control. Well-known  methods of descent  for  finite  dimensional 
minimization  are  reviewed as a prototype  for  methods  in  infinite  dimensions 
which  follow,  including  the  methods of steepest  descent,  boundary  condition 
iteration,  quasilinearization,  and  second  variation. A computational  algorithm 
for  Approximation  in X::: is formulated  based on  boundary  condition  iteration by 
a  quasi-Newton  search.  Next w e  describe a method  for  Approximation  in U 
based on concepts of asymptotic  stability  and  Hamilton-Jacobi  theory. A s  an 
important  special  case of the latter method, a computational  algorithm  for  the 
state  regulator  problem is developed. 

In Chapter 4, the  inverse  mapping  from X into U is defined,  and 
several  important  properties of the  mapping are proved. A second  variation 
method is developed  based on the  inverse  mapping.  The  basic  second 
variation  algorithm is formulated  and, as a special  case,  the  state  regulator 
problem is treated. 

In Chapters 3 and 4, the  application of each new algorithm is demon- 
strated by computational  examples,  and  comparisons are made with  the  exact 
solutions. 

In Chapter 5, conclusions  and  recommendations  for future research 
related  to  the  report  topic are given. 
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In  Appendix A,  methods are given f o r  solving  the  linear  differential 
equation  associated  with the algorithm for monotone  ApproximqJion in  U . 

In Appendix B, methods are given f o r  solving  the  Accessory  Problem 
associated with  the  second  variation  algorithm  for  Approximation  in  X. 

In Appendix C ,  we present a class of state regulator  problems with 
nontrivial  solutions  that  may  be  used to check  computational  algorithms. 

Terminology 

For the  purpose,of  introducing  relevant  terminology  and  notation,  the 
following  definitions  from  the  theory of linear vector   spaces   [ I ]  are provided: 

Euclidean  space IR is the  space of real valued  n-tuples n 

(x1,. . . ,xn) ,  (yl , .  . . , yn)  with norm I I x I I ( x i r  induced by the 
i=l n 

inner  product [x, y] = xiyi. Hilbert  space L2 (T) is the  (complete) n 

space of IRn - valued  functions x, y  which are Lebesgue  square  integrable on 
the  closed  interval T = [to,  tl] of IR, the  extended real line, with norm 

tl 
induced by the  inner  product 

to i=l to i=l 

xi( t) yl ( t)   dt  . Note that IR is a special case of Hilbert space. 
n 

The  interval  [to,  tl] is denoted by T.  The  terms  mapping  and  operator 
wi l l  be used  interchangeably.  A  functional is a mapping of Hilbert  space  into 
IR. A linear  mapping K of Hilbert  space X  into Y is bounded if there  exists a 
constant a such that 1 IK x I I 5 a I I x 1 1  for  all XEX . The  dual  space X::’ of 
Hilbert  space X consists of all bounded linear  functionals on  X. The  adjoint 
K:k of a bounded linear  mapping K : X - Y where X  and Y are Hilbert  space is 

a mapping K>k : Y -X  defined by [ y, Kx ] = [K:; y,x] for XEx , Y ~ Y  . A 

bounded linear  operator K is self adjoint if K = K:::. A self adjoint  matrix 
~ 

operator K on IR is positive  definite  (positive  semidefinite) if [x, Kx] > O(Z0)  
n 

~~~~~ 

1 

for  all x # B(  [ x , Kx] = 0 for  x = 8 and wi l l  be  denoteu by K > 0 (ZO) . 
I 

A self adjoint matrix operator on R is called  symmetric.  The  transpose of a n 
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matrix operator M on IR is denoted  by M* in  accordance  with  the  definition 
of adjoint.  The  null  operator is denoted €3 or  0 and  identity by I where  the 
space is obvious  by  the  context. 

n 

Differentiation of a function x on  T  with respect to the real variable t 
wi l l  be  denoted  by 2. Partial derivatives wil l  be  denoted by subscripts as in 
the  following  example: 

~~ 

. . .  

where L : IR - IR. The  inverse of matrix M is denoted by M-'. If X  and 
Y are subsets of Hilbert  space,  the  Cartesian  product  X x Y is the  collection 
of ordered  pairs  (x,   y) with  xEX , yEY . Addition  and  scalar  multiplication 
are defined by (xl, yl) + (xz,y2) = (xl + xz , yi + yz)  and a (x,  y) = ( a x ,   a y )  . 
C (k) (a) is the class of continuously  k-differentiable  functions on the  interval 
T. Given X and  Y  Hilbert  spaces,  the first Gateaux  differential  (the first 
variation)  6F  (x;h) of F : X - Y at x  with  increment  h is defined by 

n 

~~~ 

if the  limit  exists  in  the  sense of convergence  in  the  norm. If for  fixed  XEX 
and  each hEX there  exists  6F(x;h) which is linear  and bounded  and 

1 1 im - ( l l F ( x   + h )  - F ( x )  - 6 F ( x ,   h )  1 1 )  = O  Y 

I I  h 1 1  - 0  
I I  h II 

then F is said  to  be first Frechet  differentiable at x,  and  the unique  mapping 
dF (x$) = 6F (x;h) is called  the  first  Frechet  differential of F at x  with 
increment  h.  Higher-order  differentials are defined  in a similar  manner. We 
shall  say  that F has  a relative weak (strong)  minimum at 2 E X if there  exists 
an a > 0 such  that  F(x) 1 F ( x )  whenever J J x  - 211 < a and X E ~  (T) 
(x  E Co (T) ) . For brevity we shall  often  say  that F has  a minimum  over 

A 
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all X if the  above  condition  holds for  all x€X . A sequence of functions 

x , k = 0, 1, ... . in  Hilbert space X is called a minimizing  sequence (k) 
for the  functional V : X - IR if 
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CHAPTER 2 

ANALYSIS OF THE OPTIMAL CONTROL 
PROBLEM I N HILBERT  SPACE 

In this  chapter,  the  optimal  control  problem is defined.  Using  elemen- 
tary  concepts  from the theory of linear  vector  spaces,  necessary  conditions 
for a minimum of J on X x U x T are derived. A s  an  example,  the state 
regulator  problem is reviewed,  and known results are obtained  and  analyzed. 

Def in i t ion  of t h e  Optimal  Control  Problem 

Consider  the  problem of determining a control  function u in  the 
control  space U = L2 (T) , T = [to,  ti]  such  that a cost  functional 

J : X x U x T - IR defined by 
r 

is minimized  for all x  in  the  state  space X = L2 (T) , subject  to  nonlinear 
dynamical  system  constraints n 

x = f ( x , u ,  t) , x( t , )  = c  Y (2) 

where f : X x U x T -X and  subject  to  nonlinear  terminal  equality  constraints 

where d : X x T - IRp. Restrictions on the  problem are considered  in  the 
following section. 

Basic  Assumptions 
Th.e basic  assumptions are: 

1. The  pair of admissible  functions  (u,  x)  and  their  increments 
(6u,  6x) that satisfy  the  linearized  dynamical  system 
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are continuously  differentiable  on  T . 
2. Mappings L, f ,  and z) are continuously  second  differentiable on 

their  domains. 

3. The  functional J possesses  first and  second  Frechet  differentials 
and is a convex  function of its arguments  over all X x U x T. 

4. The  linearized  dynamical  system [ eq. (4) 1 is uniformly  completely 
controllable  on T [21. This  condition is equivalent  to  requiring that the 
controllability  matrix 

is positive  definite  where Q, (t ,  s) is the  transition  matrix of equation (4) and 
satisfies  the  matrix  differential  equation 

5. The  terminal  equality  constraints are linearly 

Condition 3 is a sufficient  condition  for a minimum 
too restrictive  for  applications.  Furthermore,  conditions 
be too strong  and  should  be  examined  in  specific  cases. 

independent.  Thus 

( 7 )  

of J and  may  be 
1 and 2 may  also 

If conditions 1 through 5 are  satisfied,  the  following  development 
provides both necessary  and  sufficient  conditions  for a weak minimum of J on 
X x U x T .  

Necessary Conditions 

To  facilitate the presentation of the  concepts  to  follow, let us   assume 
that  the  terminal  time ti is specified  in  advance. In general, it is only 
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available  implicitly  through  the  terminal  equality  constraint  [eq. (3) 1. 
Necessary  conditions  for  the  more  general case have  been  given  in  References 
3 and 4. 

Let the Lagrangian  functional F : X x U x X:: x IR x T - IR be P 

defined by 

F ( X , U , A , v , t )  = J ( x , u ) + [ A , f ( x , u , t ) - i ]  

where X E  X = L2 (T) and  u E U = L2 (T) . Elements, A, v are the  unique 

"Lagrange  multiplier" o r  adjoint  functions,  which  represent  elements  in  the 

dual  spaces X::: and  (IRp) ::: , respectively. 

n r 

I 

Suppose we define  the  bounded  mapping, K : X -X,  for all x E X  
bY 

Then  the state function  may  be  expressed  in  terms of its derivative as 

where  c is the  initial  condition  for  the  dynamical  system [ eq. ( 2 )  1. Equation 
(IO) implies  that F as defined by equation (8) may  be  viewed as a function of 

X. 

If equations ( 2 )  and (3) are satisfied, a necessary  condition  for a 
weak  minimum of F , and  consequently a minimum of J over  the  product 
space  X x U x T , is that  the first Frechet  differential of F at i and  u  vanish. 

1. Because of the  (isomorphic)  equivalence of A, v with  elements of 

their  dual  spaces [ I ] ,  we shall write h E X" , v E (IRp) :' and we shall 

identify X::: and  (IRp) :k with L2 (T) and IRp , respectively. 
n 
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Existence of the  Frechet  differential  implies  the  existence of the  Gateaux 
differential [ 51 , and  the latter provides a convenient means  for  computing 
dF . Hence,  for all 6d€X , 

d F ( i ; 6 ? )  = - F ( c + K  ( i + a 6 i )  , U , A , v , t )  1 d 
d a  cY=o 

+ A , f  ( X , U , t )   6 x 1  [ x  

- [ A , ? ] + ,  ad?] + O ( l l  6x 1 1 2 )  

where Lo , fo , q0 are  constants,  and O ( l l  6x I t2 )  , O ( l l  6x(tl) 1 1 : )  a r e  
remainder  terms for first-order  Taylor  series  expansions of L , f , Z/J a t  x . 
By substituting K62 for 6x and  differentiating  with  respect  to a , we 
obtain for all 66 X , 

2 
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dF(i; 62) = [ Lx (X,  U, t) , K 6 i ]  + [ A ,  fx (x ,  U ,  t )  K 6 i  I 

= [ KJ6 L ( x ,  u ,  t)  + f " ( x ,   u ,   t ) h  - A ,  621 
X X 

= e  

In computing  dF (2 ,  62) we have  performed the following  steps: (I) expanded 
L ,   f ,  11, in a first-order  Taylor series about x; (2) dropped  the  constant  terms 
Lo, fo ,  ll,o, which are independent of a ;  (3 )  used the Hilbert  space  inner  pro- 

ti 
duct  notation [ , I  for  [, 1 

tion of its derivative 62; (5) 
to a ; (6) used  the  identity 

to 
dt ; (4) used  equation (IO) to write 6x as a func- 

performed  the  indicated  differentiation  with  respect 

Similarly, for all 6 u ~ U  , 

dF(u;Gu) = - F  ( x , u + @ ~ u , ~ , u , ~ )  d 
dcr IC2 = o  

= [ L u ( x , u , t )  , 6u + h , f   ( x , u ,  t)  6u I [  u 3 
= e  

A well-known theorem  in  the  Calculus of Variations is the  Euler-Lagrange 

Lemma, which states if  P is a continuous  function  on  T  and if P ,  6z 
for   every tiz in Ci(T) where Gz(to) = 6z(ti) = 8 , then P 8 on T 
[ 6, 71. This  theorem is of fundamental  importance  and wi l l  be  used  frequently 
throughout this report. 

I = O  
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Therefore, by the Euler-Lagrange  Lemma,  equations (12) and (14) 
imply  that an optimal  control  function u satisfies A 

and the adjoint  function h satisfies 

A = K "  (L ( x , u ,  t) + f " ( x , $ ,  t ) A  
A 

X X 

The  adjoint  operator K>k exists since K is bounded on X.  The  mapping 
K has  been  used by Mitter [ 81 to obtain  necessary  conditions  and  to  develop 
an  iterative  procedure  for  determining  the  optimal  control  function.  This 
section is based on Gruver [ 91 and is an  extension of the results contained 
therein. A less formal  treatment is given by Blum [IO]. 

State  Regulator  Problem 

A well-known problem  in  optimal  control  concerns  minimizing on 
X x U x T a quadratic  cost  functional 

J ( u , x )  = ([x,..] + [u, Ru]) 

subject  to  linear  dynamical  system  constraints 

where Q, R,  A, B are real valued n x n, r x r, n x n,  n x r matrix 
operators,  respectively, on T , It is assumed  that  Q Z 0 and R > 0 and 
that  the  pair  (A, B) is uniformly  completely  controllable on T . Hence, 
the  conditions of the  section,  Basic  Assumptions, are satisfied,  and  equations 
(15)  and (16) are both necessary and  sufficient for a unique .minimum of J . 

From  equation  (15)  the  optimal  control 6 is 

Equations ( 16) , (18) , and ( 19) imply  that x and h satisfy  the integral 
equations 

t 
x ( t )  = c + (Ax - BR-'B* A )  ds  

t 0  
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4 
h ( t )  = J (Qx + A*A) ds Y 

t 

where  elements of A ,  By Q, x, h are functions of the real variable s. In 
the last equation  the  adjoint of the  integral  operator K in  equation (9) has  been 
computed [I, p. 1541. In 1960 Kalman  showed  that  equations ( 2 0 )  and ( Z i )  
may  be  decoupled by employing  the  "Riccati  transformation" 

h = Px 9 (22) 

where P is an  n x n real symmetric  positive  definit matrix operator on T. 
By substituting  equations (20) and  (21)  into  equation (22) , differentiating 
equations  (20)  and  (20)  with  respect  to t, and  eliminating h using  equation 
(22) , the  optimal  control  function  may be expressed as 

where P satisfies  the  matrix  Riccati  equation 

Furthermore,  the minimum  cost  functional  has  the  explicit  representation 

A 
Y 

and l im   J (u ,  x) is a Lyapunov  functional for  the  optimally  controlled  system 

121. Suppose  that A ,  B, Q, R are  constant  matrices on T  and ti - + to . 
Because of the  time  invariance, we  may  consider  the  problem on the  infinte 
interval [ 0, ..I by translation of the  orgin.  Then,  Kalman  has shown that 
P = l im P(t) exists, is unique,  and satisfies the  matrix  equation 

A 

t i - +  

- 
t 4 - m  

(24) 

Furthermore,   there exists a solution 'io equation (24) such  that  the  controlled 
system is nsymptotically  stable. 

A s  an  alternative  to  solving  equation  (231,  the  adjoint  function h can 
be obtained  in te rms  of a 2n x 2n transition  matrix I I1 1 . One difficulty is 
that  the  procedure  requires  inversion of submatrices of the  transition  matrix, 
which may  become ill conditioned  because of roundoff error  in  computation. 



Kalman  has  also  obtained  an  algorithm  for  computing  discrete  time  optimal 
control  functions by solving  Riccati-type  difference  equations [12, 131. In 
the  section,  The  State  Regulator  Problem  Revisited, I, Chapter 3, we describe 
another  technique  that was  developed by the  author  and  that  leads  to a monotone 
and  quadratic  convergent  approximation of the  minimum  cost  functional  and  the 
optimal  control  for  equations ( 17) and ( 18) by solving  linear  matrix  differential 
equations  instead of nonlinear  Riccati  equations.  The  method is applicable  to 
both  time-invariant  and  time-varying  systems. 
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CHAPTER 3 

APPROXIMATION IN X" AND u 
In this  chapter, we  consider  the  computational  solution of optimal 

control  problems first, as Approximation  in X"' and  second, as Approxima- 
tion  in U . These two  categories are treated  together  because of their  natural 
relationship  to  the  necessary  conditions  [eqs.  (15)  and  (16) 1. Methods of 
descent  for  finite  dimensional  minimization are reviewed as prototypes  for 
infinite  dimensional  spaces,  As  realizations of the latter, w e  examine  the well- 
known "direct"  methods of steepest  descent  and  second  variations  and  also 
the  "indirect"  methods of boundary  condition  iteration  and  quasilinearization. 

A second-order  computational  algorithm  for  Approximation  in X": 
by conjugate  direction  search is f6rmulated. An accurate  means  for  computing 
the  gradient is given, Next, we  describe a method  for  Approximation  in U 
based on concepts of Hamilton-Jacobi  theory  and  asympotic  stability. A s  an 
important  special  case, a computational  algorithm  for the state  regulator 
problem is developed  that  requires  solution of l inear matrix equations  instead 
of nonlinear  Riccati  equations.  Methods  for  solving  these  equations are 
discussed. 

Descent  Algori thms for Euclidean  Space 

In this  section w e  offer a preview of the  functional  minimization  prob- 
lem  based on well-known methods  for  unconstrained  minimization  in  finite 
dimensional  Euclidean  space.  Suppose  there is given a functional 

J : IRn - IR , and  the  problem is to find a minimum of J on IR . It is 
assumed  that  the  gradient  g = J may be  obtained  analytically as a function. 

Throughout  this  section  the  gradient,  the IR valued  function J defined by 

n 

X n 
X " 

dF(x:  h) = , will  be  denoted by g . 
A basic  consideration  in  the  design of minimization  algorithms is 

finding a systematic  method  for updating  an  element  in IIi such  that 

{ xtk' 1 converges  to a point  where J is minimized.  Essentially,  the  update 

consists of a step  direction  in IR and a step length. In general,  the  step 
length  must be determined by a one-dimensional  search  procedure  such as 

n 

n 

16 



quadratic or cubic  interpolation,  Fibonacci  search, o r  golden  section  minimi- 
zation  14,151.  Choice of the step direction is more  complicated,  and  one 
classification  scheme is as follows: (1) first-order  methods;  (2)  second- 
order  methods; ( 3 )  conjugate  direction  methods. In (I)   the  step  direction 

in  IRn for  the  update is restricted  to  the  negative  gradient of J (the  direction 

of “steepest  descent”  in IR ) and,  hence, only first-order  partial  derivatives 
of J are needed. In (2)  the step direction  employs  second-order  partial 
derivatives of J . In (3)  the  step  directions are chosen g - conjugate as 

defined below and require only first-order  partial  derivatives of J . More- 
over,  convergence of a minimizing  sequence is quadratic  in  the  sense of 

minimizing a quadratic  functional  on IR in at most  n  iterations. 

n 

X 

n 

FIRST-ORDER METHODS 

A model  for  first-order  methods is steepest  descent. In this  technique 
the  step  direction is restricted  to  the  negative  gradient of J . The  procedure 
may  be  implemented  either  in a continuous o r  a discrete  manner.  The latter 
is well-suited  for  digital  computer  calculation,  and  the  steps  in  the  algorithm 
are as follows: 

1. Choose  an  initial  element,  x(” ; let k = 0 . 
2. Compute  the  step  direction, 

3 .  Compute  (by a one-dimensional  search) a step  length ac (k’ which 

4. Update  according  to 

s ( k ) )  . 

5. Let  k - k + I  and repeat  steps 2 through 4 until I I g(x (k ) )  I I I  is 
less than a predetermined  positive  number. 

The  method of steepest  descent is extremely  stable  in a large neighlsor- 
hood of a minimum.  However,  computational results indicate  slow  convergence, 

17 



except for the case in which  the  "level  curves"  (loci of constant J in IR ) 
are hyperspheres.  Since  successive  steps are orthogonal,  the  procedure  often 
leads  to  inefficient  ffzig-zaggingf'.  Mathematically, it has  been  shown  that 

convergence of { } is at least as fas t  as a geometric series with ratio 

(M-m)/M  where mI < g < M I ,  0 < m < M [161. 

n 

X 

SECOND-ORDER METHODS 

A model  for  second-order  methods is the  classical Newton-Raphson 
method.  Basically,  it is an  iterative  technique  for  solving  for  the  "roots" of 

an  equation  T  (x) = e where T is a nonlinear  mapping of LR into IRn . 
Suppose J : IFt - IR , then  the  gradient  equation, 

n 

n 

A 
g(x)  = e Y 

is a necessary  condition  for a minimum of J at x , and the Newton-Raphson 
method is a convenient  means  for  obtaining  the  minimizing  element x. The 
algorithm is identical  to that given for steepest  descent  except  that  steps 3 
and 4 are replaced by the  following  iteration: 

A 

A 

where  g is the  Jacobian  matrix of g . Conditions for existence of the 

inverse  Jacobian,  and  convergence of the  minimizing  sequence ( } are 

given  in  Reference 17. These  conditions a re   r a the r  lengthy,  however,  and  in 
practice are usually  not  checked,  The  Newton-Raphson  method is very  efficient 

close to the  minimum  since  g is a measure of curvature in !X . In fact! 

ii J is a quadratic  functional on IR , then  under  certain  conditions  the 
n 

algorithm  converges  in  one  iteration. A disadvantage,  however, is that  the 
inverse  Jacobian  may fail to  exist  during  the  descent:  whereas if  the  problem 

X 

n 
X 

2. The  n x n  Jacobian  matrix g of the IR -valued  function g = J is 
n 

X X 

also called  the  Hessian of the  quadratic  functional J , 
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possesses  a well-defined gradient, it could  probably  be  solved by steepest 
descent. An additional  disadvantage is that  the  iteration  equation  (28)  may  be 

unstable for certain  choices of x  and fail to  converge.  This  instability 
may  sometimes  be  corrected by adjustment of the  step  length. 

(0) 

CONJUGATE  DIRECTION METHODS 

A compromise  between  the  methods of steepest  descent  and Newton- 
Raphson is the  following class  of minimization  techniques,  which  possesses 
quadratic  convergence - in the sense of minimizing a quadratic  functional 

on IR in at most  n  steps. 
n 

c 

The  class  has  the  advantage  that only first-order  partial  derivatives 
of J are needed. The  earliest  conjugate  direction  method,  called  the  method 
of conjugate  gradients, was  developed by Hestenes and  Stieffel [ 181. 

The name,  "conjugate  direction  methods,  arises  because  successive 

directions s , k = 0 , 1 , 2 , .  . . in IRn are  chosen  to be conjugate 
(orthogonal with respect  to  the  Jacobian  matrix,  g ) as defined by 

( k) 

X 

A s  in  the  Newton-Raphson technique,  an  essential  simplification  occurs if  J 
u 

is a quadratic  functional on IR" . In fact, if J is of the  form 

where  b E IRn  and A is a positive  definite  matrix,  then  the  main  theorem 

for  the  method  specifies a minimizing  sequence { } for J with the 

property  that ( - A-' b [I, p. 2941. Convergence of the  method is 

far superior  to  steepest  descent.  Details  concerning  the  construction of the 
minimizing  sequence,  the  step  direction,  and  step  length  are  available  in  the 
references  and wil l  not be  needed  in  the  sequel. 

Another  important  class of conjugate  direction  techniques is the  quasi- 
Newton methods.  Suppose J is a quadratic  functional as in  equation (30).  
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Then  this  class of methods  generates a sequence of positive  definite  n x n 

matr ices  { , which  converge  to  the  inverse  Jacobian A-I . Many 

different  schemes  for  updating  H(k)  have  been  proposed,  although  most 
computational results and  the  greatest  success  has  been  reported  for  that 
given by Davidon  and later refined by Fletcher  and  Powell [ 193. The  authors 
of the latter reference  have  also  proved  the  stability  and  convergence of the 
algorithm  for  nonlinear J . Details  concerning  the  construction of the  minimi- 
zing  sequence are given  in  the  references [ 19,151. 

The  method of conjugate  gradients  requires  saving  the  gradient  between 
iterations,  and  computer  storage  requirements are about  the  same as for  the 
method of steepest  descent.  Quasi-Newton  methods,  however,  provide  faster 
convergence  for  nonlinear  problems  in  return  for  storage  between  iterations 

of both the  gradient  and  the  n x n  matrix  H . ( k) 

Descent Algorithms for Hilbert Space 

In the  following  section,  computational  methods  for  optimal  control are 
classified  according  to ( I )  methods  based on the first variation of the  cost 
functional; ( 2 )  methods  based on the  second  variation of the  cost  functional. 
Within  these  categories,  particularly  in (I), the  f irst ,   second  order,  and 
conjugate  direction  m-ethods of the  section,  Descent  Algorithm  for  Euclidean 
Space,  may  be  used  to  compute  the  control  function  update. 

METHODS BASED ON THE  FIRST VARIATION 

We now consider  minimizing a functional J : X x U x T - LR where 

a minimizing  sequence { u ( ~ )  ] for J lies in a bounded  open subset U of 

Hilbert  space.  Suppose we are given  the  optimal  control  problem of the  section, 
Definition of the  Optimal  Control  Problem,  Chapter  2, of minimizing a cost 
functional 

t I 
J(u, x) = L ( x ,  u ,  t) d t  

subject  to  nonlinear  dynamical  system  constraints 

c 
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and  terminal  equality  constraints 

In general the terminal  time tl may  be free and,  consequently,  determined 
implicitly  through  equation (33 ) .  

Necessary  conditions  for a solution  to a special case of this  problem, 
(ti specified) were derived  in  the  section,  Necessary  Conditions,  Chapter 2 .  
Suppose w e  define  the  Hamiltonian  functional  H : X x X” x U x T - IR by 

H ( x , A , u , t )  = L ( x , u , t )  4- 
1 1  (34)  

where A E  X” (see footnote I in  Chapter 2 ) .  Necessary  conditions  for a 
weak  minimum of J over  the  product  space X x U x T are derived  in 
References 3 and 4, and  the results a r e  as follows: 

A 
x = H A ( x , A , u , t )  , X(tO) = c 

A 
A = -H ( X ,  A , u ,  t) 

X 

A 
8 = H ( x , A , u , t )  

U 

(35) 

(37) 

where v is a constant  adjoint  function  in (IR’) ‘I’ . Notice  that if t, is 
specified,  equations (39)  and (40) a r e  not  needed,  and  equations (36)  through 
(38) are equivalent  to  equations (15) and (16 ) .  Equations (35)  through (40) 
constitute a two-point  boundary  problem  since A(h) is unknown. Thus a 
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control  function  u E U is optimal  provided  that  an  adjoint  function h can  be 
found such  that the following  conditions are satisfied: 

A 

I. The  canonical  equations (35) and ( 3 6 ) .  

2. The min-H requirement,  equation (37). 

3 .  The  terminal  boundary  conditions,  equations (38) through (40). 

Examde  1 

A s  a concrete  example of the  necessary  conditions just  developed,  con- 
s ider  the minimization of a quadratic  cost  functional 

subject  to a linear  first-order  dynamical  constraint 

x = - x + u ,  x(0) = 1 

and  terminal  equality  constraint 

x( t , )  - 5 = 0 Y 

where t, is free. For  this  simple  problem,  the  Hamiltonian  functional is 

I 
2 H ( x  , A ,  u , t) = - (x2 + u2) -t h( -X + U) 9 

and equations (35) through (40) are as follows: 

1. The  canonical  equations 

x = - x + u  
7 x(0)  = 1 
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2.  The min-H requirement 

u + h  = 0 (37') 

3. The  terminal  boundary  conditions 

Jn the  past,  an  iterative  solution to equations (35)  through (40)  has involved 
satisfying  any two of the  preceding  conditions  while  adjusting  the  third.  Thus we  
obtain  the well-known methods of quasilinearization  (adjust  the  adjoint  functions 
in  condition 1) 1201 , steepest  descent  (adjust  the  control  function  in  condition 2)  
121,221, and  boundary  condition  iteration  (adjust  the  adjoint  functions  in  condi- 
tion 3) 123,241. Quasilinearization  and  boundary  condition  iteration are called 

ryindirectrr  methods  since a minimizing  sequence { u") for  J is obtained 

indirectly by iteration of the  canonical  equations (35)  and (361, usually by 
means of a generalized Newton-Raphson search 1171. In this  work w e  feel that 
Approximation  in X"' is a more  natural  classification  since  the  basic  iteration 
occurs  in X"' . On the  other  hand,  steepest  descent is referred  to  as a "direct" 
method  since  the  Hamiltonian  functional  and,  consequently,  the  cost  functional 
are minimized  directly  in  the  control  space U . Thus  steepest  descent  may 
be  classified as Approximation  in U . 

Usually  the  adjustment in X::' or U is enforced by a form of gradient 
descent. In some  cases  the  canonical  equations (35) and (36) can be expressed 
as a contraction  mapping on the  Hilbert  space X x X" x U x T , and  one 
could  employ  the  method of successive  approximations  attributed  to  Picard  and 
formalized by Banach to  obtain a fixed  point.  Some results using  this  concept 
have  been  obtained by deJong [ 251. 

Let us  consider 
for  the  special case ti 

the  boundary  condition  iteration  method  in  more  detail 
specified  and  unconstrained  terminal state. The  general 
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case  is given  in  References 26 and 24. Suppose  equation (37)  may  be  solved 
explicitly  for  u as a function of x and h . Then, by substituting u(x, A) 
into  equations (35)  and ( 3 6 ) ,  the  canonical  equations  may  also  be  expressed  in 
t e rms  of x and h as follows: 

h = - H  ( x , h , u ( x , h )  , t )  , h(to) = d 
X 

where  d is the  initial  condition  for  the  adjoint  function  and is unknown. The 
basic  boundary  condition  iteration  algorithm  for  Appraximation  in X" pro- 
ceeds as follows: 

1. Choose  an  initial  value  for d(O) ; let k = 0 . 

2.  Integrate  equations (41)  and  (42)  forward  from  x(to) , h(to) . 
3 .  Compute  the  function u ( ~ )  from  equation (37) and  store (ti) , 

(t,). 

4. Update d'"' in  the  direction of steepest  descent of the  terminal 
boundary  conditions. 

5. Let  k - k + 1 , and  repeat steps 2 through 4 until equations (38) 
through  (40) are satisfied  to within a predetermined bound. 

In step 4, we  usually  minimize a functional E which  involves  the terminal 
boundary  conditions.  A  procedure  for  choosing  this  functional wi l l  be  explained 
in  Example 2 and,  for a more  general  case, in  the  forthcoming  section, A 
Conjugate  Direct  Method  for  Approximation  in X"' . 
Example 2 

Use of the  boundary  condition  iteration  algorithm wi l l  now be  demon- 
strated by a special  case of Example I given earlier  in  this  section.  Suppose 
that  the  terminal  time is specified at t, = I , and  the  terminal state is uncon- 
strained.  Then,  equations (39' )  and  (40') are not  needed.  From  the min-H 
requirement,  equation (37'),  the  control  function  may  be  expressed as u = -A 
and  used  to  eliminate  u  in  equations (35') and ( 3 6 ' ) .  The  result  is 
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where  d is the unknown initial  condition  for  the  adjoint  function. A convenient 

choice  for a functional of terminal   error  is E ( x , h ,  t)  = -h2(t)  since if 

E (x, h,  ti) = 0 , the  terminal  boundary  conditiml is satisfied.  To  implement 
a descent  algorithm,  the  gradient  Ed = E z d  + E h is needed.  Let us 

differentiate  equations  (41')  and (42') with respect  to  d . The result is the 
"sensitivity  equations, 

1 
2 

h d  

x = -xd -xd d d x (0) = 0 d 

Ad d d  
= -x + A  Y A ( 0 )  = i , d 

a set of coupled  first-order  differential  equations  that  may  be  solved  for h 

A rigorous  derivation of these  equations  has  been  given by Levine 1231. Suppose, 
for  example,  that  d = 0 . Then by solving  equations (41') and (42') for  the 
functions x , h and  solving  the  "sensitivity  equations".for x d Y Y the 
gradient is 

d '  

Ed = Ahd 

Now that  the  preliminary  equations  have  been set up, the first iteration of the 
boundary  condition  algorithm  proceeds as follows: 

1. Let  d = 0 ,  

2.  Integrate  equations  (41')  and  (42')  forward  from 
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3. Compute u from  equation (37'): 

<2 
X (O) (1) = (-0. 586 e - 2.414 e 

24-5. 

4. Update d(O) according  to 

where CY (O) is a constant  chosen  to  minimize E (x, A, 1). 

Step  4  involves a one-dimensional  search  for CY (O) , which requires 

repeated  evaluation of E (x, A, 1) using the  functions x(') and A") f rom 

equations (41') and  (42')  with  initial  conditions x(') (0) = 1 , A(') (0) = d . 
Steps 2 through 4 are repeated  until E (x , 

(0) 

where e, is a small positive  number.  Notice  that  integrating  the  canonical - 
f i t  equations  has  given rise to terms of the  form e , functions which increase 
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with  t . This  illustrates  an  inherent weakness of the boundary  condition 
iteration  method,  because  the  technique is applicable  only  to those optimal 
control  problems  for which the adjoint  equation (36) is stable when integrated 
forward on T , or at least the  instabilities  do  not  predominate.  Fortunately, 
this includes a large class of trajectory  optimization  problems  for which 
atmospheric effects are neglibible.  The  algorithm is particularly  attractive 
since only storage of the  terminal  values of x (ti)  and A ( ti) is required 
between  iterations. In contrast,  steepest  descent  methods require storing at 
least the entire  adjoint  function h on  T . 

In the past,  choice of the update  in step 4 was  based on minimizing a 
functional of terminal   error   (such as a quadratic)  using steepest descent 
[ 23,271 , conjugate  gradient  search [ 281 , or the Newton-Raphson  method 
[ 26,241 to  satisfy  the  terminal  boundary  conditions. In the  section,  A 
Conjugate  Direction  Method for Approximation  in X'k , we wi l l  describe  the 
application of quasi-Newton  methods  described  in the section,  Conjugate 
Direction  Methods,  to  the  boundary  condition  iteration  technique. 

Finally,  for  comparison with  the latter  algorithm  the  basic  steepest 
descent  algorithm  for  Approximation  in U is formulated as follows: 

i. Choose a nominal  control  function u(O) ; let k = 0 . 
2. Integrate  equation 

and  store  the  function x . (k) 

(k) 
3.  Integrate  equation 

A .  

4. Update  the  control 
according  to 

(35) forward  from x(h) . Then  compute h( t i )  , 

(36)  backward  from h(t i )  , and store  the  function 

function  in  the  direction of steepest  descent of H 

where a (k) is chosen  to  minimize llH , , u ( ~ + ' )  , t) 1 1 2  . 
5. Let k - k + i and  repeat  steps 2 through 4 until 

IIH (x(k) , A ( ~ )  , u ( ~ )  , t is less than a predetermined  positive  number. 
U 
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Example  3 

Use of the  steepest  descent  algorithm is now demonstrated by the 
problem  introduced  in  Example 2. The first iteration  proceeds as follows: 

2. Integrate  equation  (35l)  forward  from x(0) = 1: 

(k) -t 
X = e  

3. Integrate  equation  (36')  backward3  from h ( 1 )  = 0 . 

h 
( 0 )  I t-I -(t+l) = 2 ( 0  - e  > *  

4. Update  the  control  function  according  to 

where a is chosen  to  minimize 

using  a  one-dimensional  search  procedure [ 14,151. 

"- 

3. To  integrate  backward, we make  the  change of variable t = I - s in 
- -~_ __ __ 
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Steps 2 through 4 of the  algorithm are repeated until 
I 

llHul12 = ( u ( ~ )  + h (k)) dt < &z . It is significant  that  the  adjoint 
0 

equation is integrated  in its frstablerl  direction.  Consequently,  the  steepest 
descent  method  may  be  applied  to a wider  class of problems  than  the  boundary 
condition  iteration  method  in  return  for  storage of at least  the  entire  adjoint 
function h over  the  interval  T . In te rms  of numerical  integration  using a 
digital  computer,  this  requires  discretizing  the  interval  T  and  storing  num- 
bers  at many  points. 

In step 4 ,  the  conjugate  direction  methods  with  their  inherent  advantages 
discussed in the  section,  Conjugate  Direction  Methods,  can  be  used.  Conjugate 
direction  algorithms  for  computational  solution of optimal  control  problems by 
Approximation  in U have  been  formulated by Lasdon,  Mitter,  and  Waren [291; 
Sinnott  and  Luenberger [ 301 , and  Lynch [ 311. In the  section, A Conjugate 
Direction  Method  for  Approximation  in X" , w e  present a new technique  for 
Approximation in U based on concepts  from  Hamilton-Jacobi  theory  and 
asymptotic  stability. A s  an  important  special  case,  the  state  regulator  problem 
is treated  in  detail. 

METHODS  BASED ON THE SECOND  VARIATION 

The  following is a sketch of a second  variation  method  that  leads  to an 
algorithm  for  Approximation  in U . Because of the  mathematical  complexity 
of the  results, we shall  restrict  this  discussion  to  the  special  case of ti 
specified  and  unconstrained  terminal  state.  Details of the  derivation  and 
more  general   cases   are  given  in  the  references [32 ,331 .  

Essentially,  the  method  consists of minimizing a second-order  approxi- 
mation  to  the  Lagrangian  equation (8) over  the  control  space U and  using a 
Riccati  transformation  to  decouple  the  resulting  boundary  value  problem. In 
fact,  the  entire  development is similar to  that  given in the  sections,  Necessary 
Conditions,  and  State  Regulator  Problem  in  Chapter 2. Let us assume  that 
the  first-order  necessary  conditions,  equations (35)  , ( 3 6 ) ,  and (38)  , a r e  

satisfied at the  kth  iteration by a control  function u = u ( ~ )  and  corresponding 

state  function x = x (k) with increments 6u = 6u (k) and 6x = 6x , 
respectively.  Suppose  the  cost  functional  in  equation ( I )  is written  in  the  terms 
of the  Hamiltonian  functional,  equation (34)  , 

( k) 

ti 

t 0  

J ( u ,  x) = (H - [A , f I l ) d t  
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where  the  arguments of H and f have  been  omitted  for  brevity.  Let J (u, x) 
be approximated by a constant  term  plus  the  sum of its first and  second  Frechet 
differentials  (the first and  second  variations) at x  and u . The  procedure 
for obtaining  the  differentials is similar  to that given  in  the  section,  Necessary 
Conditions,  and  the result is J (u ,x )  E J, + E (6u,  6x)  where 

+ - [6u ,Hm6x  2 1 9 

and J, is a constant. 

The  increments 6x and du satisfy  the  linearized  dynamical  system 

and  superscripts  denoting  iteration  are  omitted.  For  convenience, w e  a r e  
using  the  Hilbert  space  inner  product  notation as defined  in  the  Terminology 
section,  Chapter I. 

The  design of a second  variation  algorithm is based on finding a control 
increment 6u which  minimizes  E  (6u, 6x) subject  to  equation (43). This 
ffaccessory  minimization  problemff is solved by the usual technique - equating 
the  first  Frechet  differential E a t  6u in  an arbitrary  direction 5 to  zero, 
integrating by par ts ,  and  applying  the  Euler-Lagrange  Lemma  (see  the  section, 
Necessary  Conditions,  Chapter 2) .  The  result is as  follow^:^ 

.~ ~ 

4. Recall  that H = f . 
h 
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where 61 is the  adjoint  function  increment. 

Moreover,  sufficient  conditions for a weak  minimum are the  strong 
Legendre  and  the  Jacobi  (conjugate  point)  conditions: 

(a) HUU > 0 

(An alternate  approach is taken  in  the  section, A Second  Variation  Method for 
Approximation  in X , Chapter  4,  where  the  minimization is performed  in  the 
state space X after applying  an  "inverse  mapping. I f )  

If I3 is positive  definite on T , its inverse  exists,  and  equation  (46) uu 
may  be  solved  for  the  control  increment as 

By eliminating 6u in  equations (44) and (45) we obtain  the  following  linear 
boundary  value  problem  in  the  product  space X x X:: x T : 

6; = A,  6x + A, 6 h  + v 

* 
6 i  = -A, 6x - A1 6 h  + w 

where 

A,  = f - f H-l H x u u u u x  

A, = H - H H-l H xx xu  uu ux 

9 

9 

9 

, 

A, = f H-' f 
u uu u 

v = f H  H u uu u 

w = H H-l H 
xu  uu  u 
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In order  to  decouple  equations (49) and (50), we introduce  the "nonhomogeneous" 
Riccati  transformation 

bh = Pbx + q (51) 

Then the solution  to  the  boundary  value  problem  may  be  expressed  in  terms of a 
matrix Riccati  equation 

x< 
-P = PA,  + A i  P - PA, P + A, , P(t,) = 0 , (52) 

and  the  linear  equation 

The  sufficiency  conditions [ eq. (47) ] insure  that H-' exists and  that  equation 
(52) possesses  a solution on T . uu 

The  basic  second  variation  algorithm  proceeds as follows: 

1. Choose a nominal  control  function u(O) ; let k = 0 . 
2. Integrate  equation (35)  forward  from x(b) and  store  the  function 

(k) x .  

3. Integrate  equation (36) backward  from A ( t l )  and  store the function 
A .  (k) 

4. Compute the partial  derivative  matrices;  check  equation  (47a) , 
compute IT , and  check  equation  (47b). 

uu 

5. Integrate  equations (52) and (53) backward  from P( ti) , q (  ti) , 

and  store  the  functions P , q . (k) (k) 

6. Compute the gain  matrices 

Y = -H-' (H + H  P) 
uu ux uh 

= -H- I 
uu (Hu + 
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(k) 6x . 
7. Integrate 6d = (f + f Y) 6x + z from  6x(to) = e and s tore  x u  

8. Compute  the  control  update u (k+i) = p )  + yhx(k) + z . 
9. Let k - k + I , and  repeate  steps 2 through 8 until I ( H  (k) 1 1  2 

is less  than a predetermined  positive  number. 
U 

Example 4 

Use of the  second  variation  algorithm is now demonstrated by the 
computational  example  introduced  in  Example 2. The first iteration  proceeds 
a s  follows: 

2. Integrate  equation (35' )  forward  from  x(0) = 1 : 

3. Integrate  equation ( 3 6 ' )  backward  from h( 1) = 0 : 

4. 

H(  0 )  -t 
U 

= te 

H( 0 )  = l  
xx 

H( 0) = 1  
uu 

f = -1 
X 

f = I  
U 
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5. Integrate  equation (51) backward: 

L " P - P 2 + 1  = 0 Y P(1) = 0 

for which a solution by separation of variables is 

(Note:  The  function  q is zero  because v  and w are zero. ) 

6. Compute  the  gain matrices Y = - P and z = -te . -t 

Equation (43) may  be  integrated  to  obtain dx and,  hence,  the  control  incre- 
ment 6u as specified  in  steps 7 and 8. 

7. Compute du") , and  update  u ( 0 )  . . 

t-i -(t-1) 
U + e P(t) -t 
" 

2 

Steps 2 through 7 are repeated  until 

i 
2 The  second  variation  algorithm  requires  integration of - n(n+9)  equations 

at each  control  function  update  and  consequently  suffers  from  the ffcurse of 
dimensionality. If In other  words,  high-order  problems  may  require  an  exces- 
sive  amount of computation. In the last example, n = I , and  five  equations 
must  be  solved.  Another  disadvantage is the  complexity of the  computer  pro- 
gram  since  the  algorithm  requires a significantly greater number of instructions 
than  first-variation  methods. In compensation  for  the latter difficulties,  the 
second  variation  algorithm  results  in  rapid  convergence  to a minimum.  However, 
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the  occurrence of conjugate  points  [violation of the  Jacobi  condition,  equation 
(47b)l would invalidate the procedure,  whereas  first-variation  methods  could 
possibly  be  used  to  obtain a solution.  Usually  the  full  increment is not  used, 
and  adjustment of step length  should  be  provided  to  insure  stable  descent. For 

example, let u  (k+l) = Jk) + (y (k) 6 ~ ' ~ )  where a (k) 5 1 [32]. 

A Conjugate  Direction  Method for Approximation in X" 

A detailed  formulation of the  boundary  condition  iteration  algorithm  using 
conjugate  direction  search  in X" is developed for  the  optimal  control  problem 
of the  section,  Definition of the  Optimal  Control  Problem,  in  Chapter 2. In 
contrast  to  former  methods  for  boundary  condition  iteration  involving  the 
Newton-Raphson  method  [26,24] , the  inverse  Jacobian  matrix is obtained by 
iteration,  and  only  first-order partial derivatives of the  cost  functional are 
required.  This  formulation  has  been  reported by Gruver [ 9 1. 

The  most  difficult  aspect of setting up a boundary  condition  iteration 
algorithm is choosing a function of the  terminal  boundary  conditions  to  be 
minimized. In the  section,  Descent  Algorithms  for  Hilbert  Space, we  employed 
a positive  definite  functional  involving  the  terminal  adjoint  function. A 
generalization of the latter to  the  case of ti free and  terminal  equality con- 

straints is to  choose  the  Euclidean  norm of an IR -valued  function of 
terminal  boundary  conditions,  equations  (38)  through  (40).  Suppose we  define 

the  mapping  E : X x X"' x I R  ~ T - l R b y  

n+p+ 1 

P 

where w is the IR -valued  function, 
n+p+ I 

+(x Y t )  Y 

and I I . I I is the usual  Euclidean  norm on IR . A s  before  in  the  develop- 

ment of the  section,  Descent  Algorithms  for  Hilbert  Space,  d is the unknown 

n+p" I 
I 
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initial  condition  for  the  adjoint  function  in h in X:: , v is the unknown  con- 

stant  adjoint  function  with  values  in (IRp) , and tl is the unknown terminal 
time. It is assumed  that  there  exists a solution  to  equation  (35)  through (40). 
Then, if equations  (35)  through (37) are satisfied, a necessary  condition  for a 
weak  minimum of J over  the  product  space X x U x T is E(x,h,  v ,  ti) = 0 . 
We shall  consider  the  simpler  problem of choosing a minimizing  sequence 

:;< 

( d(k) Y V  (k) Y ti(.k) } such  that 

and  perform  the  minimization by conjugate  direction  search  using  the  quasi- 
Newton method of Fletcher  and  Powell [ 191. 

Next,  the  gradient is computed  in a manner  similar  to  that  described 
in  Example 2 in  the  section,  Descent  Algorithms  for  Hilbert  Space.  The 

gradient of E is the IR -valued  function n+p+ I 

Calculation of E  and E may  be  performed  explicitly.  The  ith  element 

of the IR -valued  function  Ed is 
V t n 

where  x = ( X I , .  . . ,xn) , h = (hi,. . . , , and w = ( m i , .  . . , w 1 .  
Thus,  evaluation of E  requires  the  n x n  matrix  functions x and Ad . 
By differentiating  equations (41)  and (42) with respect  to  the  initial  condition 
d , we obtain  the  matrix  "sensitivity  equations, 

'n) n+p+ 1 

d  d 

k = H ( x , h , u ( x , A )  , t )  x d + H  ( x , h , u ( x ,  A) , t )  h 
d hx Ah d y  

Xd( to)  = 0 
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'd 
= - H  ( x , h , u ( x , A ) ,  t) x xx d - Hxh ( x ,  h ,  u ( x ,  A) , t) A d '  

Equations (58)  and  (59)  provide an accurate  means  for  computing E and, 

hence,  the  gradient of E  in  terms of (d , v , ti) . Knowledge of the  gradient 
enables us to  implement  the  conjugate  direction  methods  described in the 
section,  Descent  Algorithms  for  Euclidean  Space. 

d 

The  complete  conjugate  direction  algorithm  for  Approximation  in X" 
is a s  follows:  Assume  that  equation (37) has  been  used  to  eliminate  the  depen- 
dence of equations  (35)  and (36) on  the  control  function u as in  equations (41) 
and (42). Then 

1. Choose  an  initial 7r 

2. Integrate  equations (41) and (42) forward  from  x(to)  A(to) = d 

( O  3 

= ( d  (0) , ; tl(0)) ; let i = j = 0. 
(i)  

until t = ti(i) . Compute  u(x  A) and store x 

3. Integrate  equations  (58) and (59)  forward  from  x (to) Ad(to)  until 
(i) (i) 

d 
t = ti (i) , and store  the  functions  xd , Ad . 

4. Compute  and  store  g 7r ( 
j j ) )  = (Ed 3 E v  Y Et 

where 7r (i j )  = (d(i) , $1 tl )it, 

5. Compute 7r (i ' j) by the  quasi-Newton  method with Fletcher-Powell 
update. 

a.  Choose H ( O )  = 1 . 
b. Compute s ( J )  = -H 

c. Determine a j )  + a ( j )  s(J) ) is 

minimized. 

d. T 
(i j+ l )  = 7r 

(i , j) + a (j)  .(j) . 
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where 

g. Let j - j + l  and  repeat  steps 
is less than a predetermined  positive  number. 

b through  f  until I I g 7r ( ( i y  j’) 

6 .  Let i - i+l  and repeat  steps 2 through 5 until E ( 71 ( i ,  -)) is less 
than a predetermined  positive  number. 

Determination of the  parameter a! ( j )  in  step 5c may  be  accomplished by a 
one-dimensional  search  procedure  114,15,29]. In step 5f the  quasi-Newton 

update as given  by  Fletcher  and  Powell [ 191 is used  to  update  H(j) , an  n x n 
matrix of functions on T  which converges  to  the  inverse  Jacobian  matrix of 

g ( ~ ( ~  ’ J’) as j - - . Notice  that  the  indicated  norms  and  inner  products  in 
step 5f are in  the  Hilbert  space L2 (T)  . 

n+p” I 

The  conjugate  direction  algorithm  just  presented  may  be  applied  to a 
wide class of optimal  control  problems  and  inherits  the  advantages of both the 
boundary  condition  method  (moderate  amount of storage)  and  the  quasi-Newton 
method  (rapid  and  stable  descent).  The  algorithm  requires fewer instructions 
than  second-variation  methods.  Since  the  algorithm is based upon satisfying 
only first-order  necessary  conditions  for a minimum of J , it  does  not  depend 
upon the  sufficiency  conditions [ eqs.  (47a)  and  (47b) ] second  variation  methods. 
Two very  important  advantages of the  algorithm are the  stability  and  rapid 
convergence  resulting  from  the  Fletcher-Powell  update,  step 5f, of the  quasi- 
Newton method.  The  Newton-Raphson  method  locates  the  minimum of a 

quadratic  functional J : IR - IR in  only  one  iteration  and  could  be  used  to 

compute 7r ( i  ’ 1) in  step 5. However,  the  iteration  may  be  unstable  for 
certain  initial  elements.  Steepest  descent  methods,  although  very  stable, 
may  never  converge if the  eigenvalues of the  Jacobian  matrix  are far apart. 
Quasi-Newton  methods  require at most n iterations  to  minimize a quadratic 
functional.  The  Fletcher-Powell  quasi-Newton  method  results  in  rapid  and 
stable  descent  even  for  highly  nonlinear  terminal  boundary  conditions  and is 
acknowledged as the  most  powerful  minimization  technique  currently  available. 

n 
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The  most  difficult  aspect of using  the  algorithm is choosing  the  one- 
dimensional  search  procedure  in  step 5c. Quasi-Newton  methods  usually 
require  accurate  determination of the  one-dimensional  minimum.  However, 
since  each  evaluation of E  in step 5c requires  forward  integration of equations 
(41)  and  (42) , direct   search or higher  techniques  such as cubic  interpolation 
may  require too  many  evaluations of the  functional  E  and,  consequently,  an 
excessive  amount of computer time. It is suggested  that a quadratic  inter- 
polation  scheme [ 151 or golden  section  minimization [ 141 be  employed, 
although  the  final  choice of the  best  one-dimensional  search  must  be  resolved 
by numerical  testing of the  algorithm with  nonlinear  problems. 

EXAMPLE 5 

U s e  of the  conjugate  direction  algorithm  for  Approximation  in X"' 
wil l  be  demonstrated by the  problem  given  in  Example 2 .  The first iteration 
proceeds as follows: 

1 through  4 are identical  to  Example 2 with 7r ( O  9 O )  = d(O) = 0 , 

5. Update 7r ( i  ' j) by the  Fletcher-Powell  method: 

a. H(O) = 1 . 

c.  Determine a (O) such  that  E(d(O) + a (0)  S (0)) is 
minimized  (see  Example 2 ,  step  4,  in  the  section,  Descent  Algorithms  for 
Hilbert  Space). 

d. 7r 

e. Compute g(7r (0  Y 1) ) from  equations  (58)  and (59) as in 

(0  Y 1) (0  Y 0) (0) (0)  s ( o )  = 7 r  + a  = a  

step 4. 
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Steps 5b through 5f  of the  algorithm are repeated  until 
1 

(i ' J))' dt < a4 . After  convergence of the 
V 

sequence ( p  , j) , j = 1 , 2,. . . , steps 2 through  5 are repeated  until 

E ( T ( ~  ' ) < a5 . Notice  that the first   i teration of the  quasi-Newton  method 

in  step 5, for  H(') = I , results in  minimizing  in  the  direction of steepest 

descent.  However,  successive  step  directions s'j) are modified  in  step 5b 

by the  matrix  H ( j )  and  eventually  result  in a Newton-Raphson iteration. 

A Method  for  Monotone  Approximation in U 

In this  section, a sequence of functional  approximations to the  optimal 
cost  functional is obtained by using  concepts  from  the  Hamilton-Jacobi  theory 
to  generate a minimizing  sequence  for J in  the  control  space U . This 
technique was first reported by Gruver [ 131 and P u r i  and  Gruver [ 341. 
Similar  results  for a more  general  case were given by Leake  and  Liu  [35]. 
An alternate  proof  for  the  case of the  state  regulator  problem  has  been  given 
by Kleinman  and  Athans [ 361 and  Wonham [ 371. 

Consider  the  optimal  control  problem as stated  in  the  section,  Definition 
of the  Optimal  Control  Problem,  in  Chapter 2. Let u s  assume  that  the  terminal 
time is specified,  and  the  terminal state is unconstrained.  The  following  method 
is based on obtaining a (k+l)st  control  function  approximation  to  the  optimal 
control by minimizing a certain  Hamiltonian  functional  containing  the  kth 
control  function  approximation.  Let  the  kth  approximation  to  the  minimum 

cost  functional V (k) : X x U x T - IR be  defined by 

t 

and  the  Hamiltonian  functional  H : X x U x X"' x T - IR by 

5 . T h i s o n h t h e o n e  contain an expansion  and  correction  to' 
References 13 and 34. 
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By defining  the  Hamiltonian as in  equation (61) , w e  are treating  V(k) as a n  

adjoint  function  in X" . This  choice  provides a convenient  method  for  deter- 
mining  the  adjoint  function  from  the  cost  functional.  For  example,  suppose 

that L is a quadratic  functional  on X x U x T . Then  V(k)  has the repre- 

X 

- 

sentation  V (k) = '[x, x] for  some  n x n matrix P(k) whose 

elements are functions  on T and,  therefore, V" (k) = ~ ( ~ ) x  . Consequently, 
2 I 

A 

P(k' specifies a Riccati  transformation as in  equation ( 2 2 )  and, it can  be  shown, 
a lso satisfies a matrix  Riccati  equation.  Further results on the  correspon- 

dence of V(k)  and  the  adjoint  functions  in X"' are given by Kalman [ i l l  
although, for  our  purpose  in  the  following  section,  the latter discussion  pro- 
vides  adequate  motivation  for use in  the  method  that  follows. 

X 

Given  the  initial  approximation  u(') , suppose  that we have  obtained 

the  kth  approximation u ( ~ )  and  the  corresponding  cost  functional V . 
By the min-H condition a better  approximation u (k+i' to  the  optimal  control 

( k) 

A 
u is obtained by minimizing  H (k) , t) over all u E U . In fact,  the 

Maximum  Principle [38] insures  that u (k+l' is a better  approximation  even 
if the  control  function is restricted  to a closed  proper  subset of U . In the 
latter  case,  however,  there are no simple  methods for performing  the  mini- 
mization  since  the  gradient of H  may not exist. 

W e  shall now show that  the latter procedure  for  obtaining  u (k+l) f rom 

u ( ~ )  results in a sequence of cost  functional  approximations, which is mono- 

tone  decreasing to the  minimum  cost  functional. By definition of u 
have 

(k+1) we 

which implies 
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Furthermore,  it may  be shown [ 111 that V ( k )  satisfies the  ttHamilton- 
Jacobi” partial differential  equation, 

H ( X ,  u ( ~ )  , V(k) X , t) + v:k) = 0 

Consider  the  control  function  u (k+l) and  the  induced state function from 
equation (2) .  Then by using  equations  (60)  through  (63) we obtain 

- d . ”- 
d t  

The  second  line  in  equation  (64)  follows  since  equations  (62)  and  (63)  imply 
that 

We are using  the  fact  that  the  third  line of equation  (64) is the  total  derivative 

of V (k) with respect to t around  the  state  function x as determined by 

U (k+l) . By integrating  the first and last terms in  equation  (64) on (t,  t i]  

and  using  the  fact  that V (k+i) (ti) = V (k) (ti) = 0 , we obtain  the  inequality 

which proves  that ( V(k) ) is monotone  decreasing. 
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Since V (O0) also satisfies equations (62) and (63) and,  therefore,  for 
k = i , 2 ,  ... 

the limit V(O0) of the  sequence 1 V (k))  can  be  established by the same 
reasoning  leading  to  equation (65 ) .  It is more  difficult  to  show,  in  general, 

that V(..) = V , the  minimum  cost  functional.  Leak  and  Liu [351 proved it 

by assuming  continuity of the  operator  that  transforms  the  functional V ( k) 

into V (k+i) . In the  following  section, w e  consider  the  special case of l inear 
dynamical  constraints  and  quadratic  cost  functional  (the state regulator  pro- 
blem  described  in  the  section,  State  Regulator  Problem,  Chapter 2 ) .  It is 

shown  that V(k) may be expressed  in  terms of a positive  definite  matrix 

A 

p (k) , which satisfies a sequence of linear  differential  equations  that  converges 
as k - m to  the  matrix  Riccati  equation ( 2 3 ) .  Since it has  been shown  that 
equation (23) possesses  a unique  positive  definite  solution [ 2 ] ,  existence of 

the  optimal  control  for  the  original  problem  implies  that ( V(k)  ] converges 
to  the  minimum  cost  functional. In the  more  general  case,  however,  explicit 

conditions  which  insure  that  lim V(k) = v^ a r e  not yet  available. 
k- m 

A t  this  point we shall  assume  that  L(x,  u, t) is positive  semidefinite6. 
In addition,  suppose ti - + 00 . Then w e  may  guarantee  the  stability of 

equation (2)  resulting  from  the  approximation  sequence ( u(k) ) as follows. 

Assume  that  there  exists  an  initial  control  function u ( ”  E U  such  that 
equation (2 )  is uniformly  asymptotically  stable [ 39, p. 3951. Then it is 

shown  in  Reference 2 that V ( ”  is a Lyapunov functional  for  equation (2 )  

with u = u ( ”  . Suppose  that we  have  obtained  the  kth  approximation  u (k) , 
and  the corresponding  cost  functional V(k)  is a Lyapunov  functional for  

equation ( 2 ) .  Then by applying  the  previous  method of choosing u (k+i) by 

minimizing  H(x, u, V(k) , t) , we can show that u (k+i) is also a “stablef1 
X 

6. A  functional  L : X x U x T - IR is positive  semidefinite if L(x ,  u, t) 2 0 
for  all X E X  , U E U ,  t E T  withequal i tyif ,   andonlyif ,  x = 8 , u = 8 . 
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control. By assumption  L(x, u (k+i) , t) is positive  semidefinite,  which 

implies  that V (k+i) is positive  definite.  Moreover, -V = -L(x,  u (k+i) , t) , 
which is negative  semidefinite.  Thus V (k+i) is a Lyapunov  functional  for 

equation (2) with u = u (k+i) , which implies  that  equation (2) is uniformly 
asymptotically  stable. 

d (k+l) 
dt 

The  preceding  development  may be summarized by the  following: 
Theorem:  Given  the  cost  functional  [eq. (I)] and  dynamical  system  constraints 

[ eq. (2) 1 ,  let us  define  the  mappings V(k)  : X x U x T - IR by 

V (k) = 7 L(x , u ( ~ )  , s ds  and H : X  x U x X” x T - LR by 
c 
L 

H ( x ,  U, V , t )  = L(x, u, t) + 
u(’) , a sequence of control  function  approximations { } may  be  generated 

by minimizing H ( x ,  u, V , t )  , k = 2 ,  3 ,  . . . over all u EU,  and this 

sequence  possesses  the  following  property of monotone  approximation: 

( k) [ V ( k )  , f (x, u, t)] . Then  given  an  initial 
X X 

(k- 1) 
X 

for k = I, 2, . . . where V( w, = l im V(k) exists, and V is the  minimum 
A 

k- 00 

cost  functional  corresponding  to  the  optimal  control  function.  Moreover, if 

L ( x ,  u, t) is positive  definite,  tl - QJ , and if there  exists ala initial u 
such  that  equation (2) is uniformly  asymptotically  stable,  the  dynamical 

system,  equation (2)  is uniformly  asymptotically  stable  for u = u (k) , 
k = 2, 3, . . .  

(1) 

The  State  Regulator  Problem  Revisited, I 
A s  an application of the  method  for  monotone  Approximation in U , 

let us consider a special  case of linear  dynamical  system  constraints 

and  the quadratic  cost  functional 
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where  A, B, Q , R are matr ices  whose  elements are functions on T  and 
satisfy  conditions  given  in  the  section,  State  Regulator  Problem,  Chapter 2 .  

Suppose  that  u(') is an  initial  control  function,  Then by the  previous 

theorem, a minimizing  sequence  for J can  be  obtained by selecting  u = u 
in U such  that  the  Hamilton  functional 

(k+ 1) 

is minimized.  Since U is an open set, a weak minimum of H can  be 
found by equating its gradient with respect  to u with zero.  Hence, 

0 = H U ( ~ , u , V ( ~ ) , t )  
X 

and  since  R > 0 we may  solve  equation (70) fo r  u 

evaluate V (k) in   terms of known quantities, w e  shall use an  approach  similar 

to  that  described  in  Reference 2 ,  which originally  motivated  the  definition 

of V(k)  . Assume that  V(k)  can  be  represented as V(k) = '[x, P(k)x]  

where P(k) is a positive  definite,  symmetric,  n x n matr ix  whose elements 
are functions on T . Then  the  kth  approximation  to  the  optimal  control 
function is 

(k+l)  - " R-IB:::v (k) . To 
X 

X 

2 I 

Using  equation ( 68) and  changing  the  lower limit of integration to tc  [to,  ti] , 

V(k)  may  be  written as 
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Differentiating  the last equation  with respect to t and  substituting 
A - BR-1  B"' p(k-l)x for 2 w e  obtain the following l inear matrix differential 

equation: 

where 

Equations  (71)  through  (74)  define a recursive  solution  for  the  optimal  control 
functions  which  may  be  summarized  in  the  following  algorithm: 

1. Choose  an  initial  control  function  u  and  determine P , (0) . 
le t  k = 1 1 

2. Compute A (k) Q (k) from  equations  (73)  and  (74). 

3.  Integrate -P ' (k) = p ( k ) A ( k )  + (A (k))" p (k) + Q (k) backward 

f rom P (k) (tl) , and store  the  function P . ( k) 

4. Integrate k = A (k)x  forward  from x(to) and store  the 

function x . (k) 

5. Compute  the  next  control  function  according  to 

6 .  Let k - k+l and repeat steps 2 through  4  until 

1 I 13"VAk' + Ru (k+l) I l 2  is less than a predetermined  positive  number. 

In general,  step 3 involves  integrating a time-varying  linear  differential  equation. 
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If a closed-loop  control  function is desired,  step 4  may  be  replaced by com- 

putation of the  feedback  gain  matrix R-'B''P (k) . For the  systems of order  

n 2 3 , finding  the  required  initial  matrix P(') is nontrivial.  The  pole- 
shifting  technique  used  in  References 40 and  41 is an  effective  method for 

constant  coefficient  systems.  However, a general  method  for  selecting P 
is not  available at the  present time. 

( 0 )  

The greatest advantage of the algorithm just  presented is that  equation 
(72)  specifies a linear matrix differential  equation  that  must  be  solved  to 

compute  the new control  function  u  (k+l) . Methods for  solving  equation  (72) 
are given  in  Appendix A. ( I n  contrast,  the  standard  approach  given  in the 
section,  State  Regulator  Problem,  Chapter 2, involves  solving a nonlinear 
matrix  Riccati  equation  for which a solution  may  not  even exist. ) The 
algorithm  requires a modest  amount of computer  instructions  and  computation 

time. I t  was recently  shown by Kleinman  and  Athans  [36]  that [ V ) also 
possesses  quadratic  convergence,  whereas  most  other  algorithms  for  computing 
the optimal  control,  such as ASP or  Runge-Kutta  integration of equation  (72), 
display  only  linear  convergence  to  the  minimum  cost  functional. Although 
further  testing of the  algorithm with high-order  linear  time-varying  systems 
having  finite  time  interval (ti < w )  is needed,  numerical  studies by this 
author  and  application of the  algorithm by others [ 36,41 , 401 have  indicated 
that  the  method  for  monotone  Approximation  in U described in this  section 
is the  most  efficient  technique  for  the case of constant  coefficient  systems 
and  infinite  time  interval. 

( k) 

EXAMPLE  6 

Given  the  quadratic  cost  functional 

I s"' 
J ( u ,  x) = 5 (qx2 + ru2)  dt 

0 
(75) 

and  the  linear  first-order  system 

where  q 2 0 , r > 0 , and ti 5 00 . The  problem is to  determine a minimizing 
sequence  for J . Computation of an  approximation  to  the  closed-loop  optimal 
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control  function by the  previous  algorithms  for  monotone  Approximation  in u 
proceeds  for  the first iteration as follows: 

I. Choose u") = 0 which implies p = 0 . 
2. Compute  A = - a ,  Q = q .  

(0) 

(1 )  (1)  

3. Integrate  equation (72) : 

which has  the  solution, 

P (I) = 1 (I - exp(-%a (ti - t ) ) )  2a 

4. Update  the  control  function: 

where 
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The  solution  to  the last equation is 

where 

and 

Therefore,  the  resulting  approximation  to  the  optimal  control  function 
is 

Suppose  that t, - + 00 . Then if a > 0 , a minimizing  sequence of asymptoti- 
cally  stable  functions  for J is as follows: 
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EXAMPLE 7 

Given  the  cost  functional 

and  the  linear  system 

G2 = -xl - ax2 + u , x2(0) = c2 9 (82) 

where a > 0 , we apply  the  algorithm of this  section  to  find a minimizing 
sequence for J . Let  us  define  the state function x = (xi,  x2)  and  the 
matr ices  

Q = diag( I 0) R = I  . 

A minimizing  sequence u ( ~ )  is obtained  from 

The  constant  matrix ?(k) is the  solution of the  linear  matrix  equation 
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where 

A (k) = A - BR-1 B*P -(k-l) 

Since a > 0 w e  may  choose  u(’) = 0 ; hence P = o and  from 
equations  (83)  and (84) the result of the first three  iterations is 

(1) 
U = o  

EXAMPLE 8 

Given  the  cost  functional 

where  qll 2 0 q22 P 0 , r > 0 and  the  linear  third-order  system 

x1 = x2 

x2 = x3 

x3 = -0. lx l  - I. 2x2 - 2. Ix3 + u 
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determine a minimizing  sequence  for J . Applying  the  previous  algorithm, 
we define  the state function  x(t)d.R3 , control  function  u(t) cIR , and  the 
matrices 

1 

A =  ( 1  0 1 )  B=(:) 

-0.1 -1.2  -2.1 

The  problem was programmed  for  the  digital  computer,  and  representative 
resul ts  are shown  below.  In each case the  closed-loop  approximation to the 

optimal  control is u = - knx . 
3 

n= 1 

m in 
cost  qi i  q 2 2  r kl  k2 k3 

I 0 0. 5 I. 3177 1. 8090 0.7334  2.0730 

1 0 1 0.9050 1. 3215  0.5558 2. 4141 

1 0 2 0. 6141 0.9461  0.4104 2. 8252 

I I 0. 5 1. 3177 2.1787  0.8610 2. 3351 

I I 2 0. 6141 I. 0756 0. 4615 3.0103 

In each  case,  four  iterations  were  required  to  obtain  convergence of the 
algorithm. A s  a check  on  the  computer results, the  exact  solution was 
obtained  for  qll = 1, qZ2 = 0 ,  r = 1 using a spectral  factorization  method 
devised by Pur i  and  described by Pur i  and  Gruver [ 341. For this  case  the 
exact  solution  to  three-decimal  accuracy is: 

which compares  favorably with  the  approximation  shown  above. 
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I 

Further  examples of the  latter  approximation  method  to  the state reg- 
ulator  problem  have  been  given  recently by McLane [41] and Yu , Vongsuriya, 
and  Wedman 1401 . In the latter reference,  the  authors treat the  optimization 
of a power  system  involving  an  eighth-order  constant  coefficient  system  with 
two control  inputs.  Analog  simulation was used  to  check  the  computer  solution, 
and  the  results  appear  favorable. 
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CHAPTER 4 

APPROXIMATION I N  X 

In  this  chapter, we formulate a new class of computational  methods 
for  the  solution of the  optimal  control  problem  stated  in  the  section,  Definition 
of the  Optimal  Control  Problem,  Chapter 2 .  Given the cost functional  [eq. (1) 1 
subject  to  dynamical  system  constraints  [eq.  (2) 1 , we seek a minimizing 
sequence  for J by Approximation  in X , Central  to the  theory is a represen- 
tation  for  the  mapping  from X into U . A new second  variation  algorithm is 
developed  for  the  nonlinear  control  problem. In contrast  to  previous  second 
variation  methods, w e  avoid  the  use of adjoint  functions  and  the  Hamiltonian 
formulation.  At  each  control  function  update,  the  control  increment is obtained 
in  terms of the state increment  in a least-squares  sense. An accessory 
boundary  value  problem is obtained,  the  solution of which specifies  the  control 
function  update. A s  an  important special case,   the state regulator  problem is 
treated,  and  several  computational  examples  illustrate  the  use of the  technique. 

The  Inverse  Mapping 

Let u s  assume that  the  dynamical  system [ eq. (2) 1 may  be  linearized 

about  an  initial  control  function  u = u ( ~ )  in U and  corresponding state 

function x = x (k) in X . Hence, 

where dx = 6 ~ ' ~ )  in X and du = du (k) in U are increments at x and u, 
respectively.  For  brevity,  the  arguments  x, u of f  and superscripts 
denoting  iteration are dropped. 

If the  matrix f ( t )  were  invertible and nonzero  for  all t E T ,  we 
U 

could  solve  for  6u(t)  simply by  premultiplying  equation ( 92) by f ( t )  . In 

general,  however, fu(  t) is not invertible  and  the  pseudo  inverse [ 421, 

-1 

U 

f+(t)  =(f"(t) f f q t )  , 
U U U U 
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yields  the  least-squares  solution  for  6u(  t)  [in terms of  6x (t) ] to  the 
"overdetermined1'  system  [eq. (92) ] , which has  more  equations  than unknowns. 
If f ( t )  is invertible,  the  psuedo  inverse  reduces  to  the  usual  inverse, 

U 

In  general, f (t) may be. zero  for  some t E  T .  If fuTt) f (t) 2 0, it is 
U  U 

convenient to define  the  €-pseudo  inverse of f ( t )  as  
U 

g € (t) =( f p )  f U (t) + €1)- f"(t) U , (93) 

where E is a small positive (real) number.  The  parameter E insures 
that  the  indicated  inverse  in  equation (93) exists. If f"' ( t )  f (t) > 0 for all 

t E T , we shall  choose E = 0. 
U U 

Based on  the  above remarks,  equation (92) may  be  solved  for  the 
control  increment  in  terms of the  state  increment as 

where 

At  this  point of the  development, we  must  restrict  the  function 6x to be at 
least continuous  and  possess a derivative in  X . This  condition is satisfied 
by assumption 1 of the  section,  Basic  Assumptions,  Chapter 2. Let us  define 
the  residual 

The  functional I I p (6u) I I is a measure of the  error  between  the  acutal  and 
desired  solution  to  equation (92) .  For example, if f is invertible,  then 

IIp(6u) = 0 . It is possiblefor  Ilp(6u) 1 1 '  = 0 even if f is singular. 

An important  example of the latter is a linear  time-varying  system  having 
a single  control  function  input. Use  of the  usual  pseudo  inverse (E = 0) in 
determining  the  control  increment results in  minimizing  the  functional 
I I p (6u) I I , The  following  theorem  specifies  the  function  that is minimized 
by the  use of the  €-pseudo  inverse: 

U 

U 
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Theorem:  Given  equation (92) , suppose  that  the  function 6: 6x and  the  matrix 
operator f are specified  in  advance,  where d: 6x E X  , 6 u ~  U , and f 

induces a bounded  linear  mapping  from U to X . Let E be  chosen such 
that  det ( f "  f + E I) # 0 for all t E T  and  let 1 I p, (6u) 1 l2  be  defined by 

U U 

u u  

Then, 

where 

1 1 2 +  E I I  6u 1 1 '  

= [f 6u - S6xy 
U 

f 6u - g a x  + E 6u, 6u 
U J [  I 

= [ u  f>iC f u 6u, 6u] 4- [ m x ,  26x1 

- [ f  U 6u, mx]- [ C 6 X Y f  U 6u]+  c[6u, a,] 

= [ u  u I -  [ u u  1 
+ II C6X I T +  €[6U, 6u] 

f:: f 6u,  6u 2 6u ,  (f:: f + €I)& 

where 
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Finally, by collecting  terms, 1 1  p, (6u) 1 1  may  be written as 

By assumption 1 1 6 :  6x 1 I , a fixed  number, is finite.  Since 
f"  f + E I > 0 , llpE(6u) 1 1 '  is minimized by 6u = 6v . QED 
u u  

In summary, we have  obtained  in  inverse  mapping  in  the  sense  that 
the  control  increment  may  be  expressed  in  terms of the  state  increment by a 
linear  mapping of X into U a s  defined by equation ( 94) . Under  certain 
conditions a s  specified  in  the  last  theorem,  use of the  €-pseudo  inverse 
results  in  minimizing  the  square of the  norm of the  residual  plus  an  additional 
t e rm involving  the  control  increment  "energy. If f ( t)  # 8 for  all t E T , 
we shall  choose E = 0 . U 

A Second  Variation  Method fo Approximation in X 

In the  section,  Descent  Algorithms  for  Hilbert  Space,  Chapter 3, we 
described  the well-known "direct"  second  variation  algorithm  based  on 
minimizing,  in  the  control  space U , the sum of the first and  second  variations 
of the  cost  functional. In this  section, we exploit  the  inverse  mapping,  defined 
in  the  preceding  section,  for  the  purpose of developing a new second  variation 
algorithm  that is based on performing  the  minimization  in  the state space X . 

Suppose  the  terminal  time is specified,  and  the  terminal state is 
unconstrained.  Then let the  cost  functional 

t I 
J ( u ,  X) = 1 L ( x ,   u ,  t) dt 

t 0  

(99) 

be  approximated by a constant  term 3, plus  the  sum of the first and  second 

Frechet  differentials of J at u = u (k' and  x = , which satisfy 

equation (I) with increments (k' and 6x = 6x , respectively, = 6u ( k) 

57 



I 1  I I I I 1   I 1  I 1111mII Ill 1l111l 

which satisfy  equation (92).  This sum is computed by taking  the  following 
Gateaux  differentials: 

I 
2 ax, ax2 

+ -  
a2  ( tot1 

J L ( x +  q 6 x +  a 2 6 2 x ,  u +  a , d u  

\ I  

where d2u  and d2x are second-order  increments at u and x , respectively. 
For  brevity,  arguments of L and superscripts denoting  iteration a r e  
dropped. By expanding L in a second-order  Taylor series and  performing 
the  indicated  differentiation, E may  be  rewritten  using  the  Hilbert  space 
inner  product  notation as follows: 

E ( 6 u ,  AX) = [Lx, 6x1 + [LU, 6U] [ 6x, L,, "1 
+ - I p, Lxu a,] + -y 1 [a, Lux 6x1 

2 

2 

The  inverse  mapping  defined by equation (94) is now used  to  eliminate  explicit 
dependence  in  equation (100) with respect  to du . Thus we obtain 
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1 
+ + [  

2 E 

E 

2 

I 
2 xu € E 
" 

uu E 
- 

The  development of the  second  variation  method for Approximation  in 
X is based on finding a state increment dx in X which minimizes E . 
Since  E  in  equation (101) is an  explicit  function  6x,  this  minimization  may 
be  performed without  the use of adjoint  functions  and  the  Hamiltonian  formu- 
lation  used in the  section,  Descent  Algorithms  for  Hilbert  Space,  Chapter 3. 
A necessary  condition for a weak  minimum of E over  the state space X is 
that its first Frechet  differential at 6x with increment 5 vanish.  Since  it 
is assumed  that  the  Frechet  differential of E  exists, it may  be  computed by 
using  the  Gateaux  differential.  The latter is linear  in  and  can  be  written 

in the  form dE (6x;t) = [ E 6x, 5 1  , where  Edx is called  the  gradient of E 

with respect  to 6x . Rather  than  compute  the  Gateaux  differential as in the 

59 



section,  Necessary  Conditions,  Chapter 2,  we shall  take  the following 
alternative  approach  and (I) simply  compute E dx -' , (2)  use the  definition 

of adjoint  from  the  section,  Terminology,  Chapter I, which permits  moving 
an  operator  from  one  side of an inner  product  to  the  other  side; ( 3 )  integrate 
te rms  involving 62 by par ts ,  which results in  "boundary  terms"  involving 
6x(tl)  and  62(ti)  only,  since  dx(to) = 8 . For  example 

d 
dt where gt = I - is defined a s  the  matrix  differentiation  operator on C1(T) . 

Then if we define 

h = g  L g 
E U U E  , 

the  differential of E is computed as follows: 

- gt ( h  6%) - - f"' h 6k I 
2 x  

I I 
2 X 

+ - LB ( h f  6x) + f" hf 6x I 
2 t x  x x  

+ - a t ( h f  6 ~ )  - 2 f z  h6k 

7. Note: The  gradients of p, AyI1 and [ y, Ax] with respect  to x a r e  
- 

Ay and  A"y,  respectively. 
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By collecting  terms  involving 6x and its derivatives,  dE ( 6x;t)  may 
be  written as 

Lx - 9 (gzLu)  - f* x g E Lu 

+ (Lxx - B t ( L  xu  g E ) $ e  ‘ ( L  xu  g E: f x + ( L  xu  g E: f x ) * I  

- B  ( h f  ) + f ” h f  ) A X +  ( ( L  g - ( L  g ) * )  t x  x x  xu E xu € 

- B h  - f*h + hf )6k t x  X 

- h 6x, 5 1  + boundary  terms . 

Suppose we arbitrarily  set  the  boundary  terms  to  zero.  Then by the  Euler- 
Lagrange  Lemma  in  the  section,  Necessary  Conditions,  dE  (6x; 5 )  = 0 implies 

that  the  state  increment 6x = satisfies  the  following  linear  second-order 
differential  equation: 

d 
8. Recall  that  gE = (f’”f + E I) f ’6 and at = I - u u  U dt  
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and  subject to the  following set of "self-adjoint"  boundary  conditions: 

N = hf - L g + g'"L x xu E E xu 

To compute  the  control  increment 6u = 
solve  equations (103) through ( I  1 I). Because of the  similarity of the  latter 
two-point  boundary  value  problem  to  equations (49) and (50) of the  section, 
Descent  Algorithms  for  Hilbert  Space,  Chapter 3 (in which w e  obtained  second- 
variation  necessary  conditions  for  Approximation  in U ) ,  we shall   refer  to 
equations (103) through ( i l l)  as the  "Accessory  Problem. I t  Computational 
solution of the  Accessory  Problem is discussed  in Appendix B. The  solution 
for  the  special  case of the state regulator  problem is given  in  the  section, 
The  State  Regulator  Problem  Revisited, II. Sufficient  conditions  for  the 
existence of a solution  to  the  Accessory  Problem,  and  hence  existence of a 
weak  minimum of E , follow from  the  Calculus of Variations  and  involve  the 
classical  strong  Legendre  and  the  Jacobi  conditions I 6 ,  71. 

EXAMPLE 9 

Consider  the  cost  functional 

u2,) dt 

and  the  first-order  linear  dynamical  system  constraint 

k = u  , x(0)  = I  . 



For this  simple  case 

L = u +  I 
X 

L = x + u  
U 

L = o  
xx 

L = L  = I  
xu  xu 

f = o  

f = I  . 
X 

U 

L = I  
uu 

Since (f"f ) (t) > 0 , tE [ 0  , 11 , we may  choose E = 0 . Then  g = 1 and u u  

h =  I 

F= I 

G = O  N= 0 

k = u + I - k - h  r = x + u  

Therefore,  equation (103) becomes 

6 X = u + I - k - h  (103') 

subject  to  equations (108) and (log), the  ffself  adjoint"  boundary  conditions 

6x( 0) = 0 (108') 

6X( I)  = u( I) + x( I) . ( 109') 

A general  algorithm  for  the  computational  solution of problems of 
this kind is given  in  the  next  section. 

The Basic  Computational  Algori thm 
The  steps  in  computing  optimal  control  functions by the  methods 

described  in  the  sections,  The  Inverse  Mapping,  and a Second  Variation 
Method for Approximation  in X , may  be  summarized  in  the  following 
algorithm: 

1. Choose  an  initial  control  function u(O) ; let k = 0 . 
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. 

2. Integrate 2 = f(x, u, t) forward  from  x(h)  and  store  the 

‘I 

3. Compute the following  partial-derivative  matrices  evaluated at 

and u (k) : fx, fu, Lu, LX; Lux,  L  L  L . xu’  uu’ xx 

4. Solve the Accessory  Problem,  equations (103) through (ll#) , for  

61i(k) (see Appendix B). 

5. Compute  the  control  function  increment 

6u ( k) = gc(62(k) - f X 6x(k))  , 

6 .  Update  the  control  function  according  to 

7. Let  k--k+l and  repeat  steps 2 through 6 until 

l J ( U  (k) , x(k))  - J(u(k+i)  , x  (k+i))  I is less than a predetermined  positive 
number. 

As was mentioned for the  second  variation  algorithm  described  in  the  section, 

Descent  Algorithms  for  Hilbert  Space,  Chapter 3, the fu l l  increment 6u 

should  not  be  used,  and  the  constant Q! (k) is included  in step 6 to  provide  stable 
descent. 

( k) 

EXAMPLE 10 

As  an  example of the  second  variation  algorithm of this  section 
consider  the  problem  introduced  in  Example 9 of minimizing  the  cost 
functional 

i 
J ( u , x ) =  ( x + x u + -  2 u“) dt  

0 

subject  to a first-order  l inear  system 

i = u  , x(0)  = i . 
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It w a s  shown in the  previous example that  the  Accessory  Problem is 

subject  to '!self adjoint!! boundary  conditions 

6x(O) = 0 

&(I)  = u( I) + x( I) . 

(I 03') 

(108') 

( 109') 

The  steps  in  computing  the  optimal  control are as follows: 

1. Let u = o  

2 .  Integrating  equation ( 113)  yields x(') = 0 . 

(0) 

3-4. Solve  equation  (103') by lettingdx = - t2 + cl t  + cz  and 
1 
2 

evaluating  constants c1 = - - 5 , c2 = 0 by using  equations (108') and  (109'): 

(4.17'-4.18') : 

*x = 't(t 2 - +) . 
5. Compute  the  control  increment  from  equation  (94): 

5 
6 u =  t" 4 

6. Update  the  control  function: 

In this  example, J is a true quadratic,  and the system is linear.  Therefore, 

the  differentid is also  linear  in x and  u , and  the  optimal  control  u = u ( 1) 
has  been  obtained in a single  iteration, as may  be  verified by comparison with 
the  solution given in  Reference 43. 
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EXAMPLE 11 

Next, we consider  the  minimization of the  quadratic  cost  functional 

i 2 
J( u, x) = - (x + - I u') dt 

2 i  2 

subject  to  a  first-order  nonlinear  system 

k = - x  + u  , x ( i )  = i . 2 

The  Accessory  Problem  for  this  example is 

6 2  = ( & 2 - 2 H ) 6 x +   i + 2 x u - G  

= ( 6x2 - 2 ~ )  6~ + i +   XU - 

subject  to  boundary  conditions 

6x( i) = 0 

Sic( 2) = -2x(  2)  6x(  2) + u( 2) 

The  steps  in  computing  the first approximation  to  an  optimal  control  are as 
follows: 

1 
2. Integrating 2 = -x2 yields x(') = - t '  

3-4. Solve  the  Accessory  Problem, 

6 x =  (5) 6x+ i 

6x( i) = 0 

6H(2) = - 6x(2) 
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The  general  solution  to  the latter equations 
and is follows: 

may be  obtained by integration 

I 3 -2 I 
10 20 4 

(jx= “3+ - t - “2 

5. Compute  the  control  increment  from  equation (94) : 

6. Update  the  control  function: 

In this  example  involving a nonlinear  system, we obtained a second-order 
linear,  time-varying  equation  for  the  Accessory  Problem which  could be 
solved  analytically  in  closed  form. In general,  the  accessory  problem  must 
be  solved  numerically on a digital  computer  using  the  methods  given  in 
Appendix B. 

The  State  Regulator  Problem  Revisited, I I 
Consider 

cost  functional 

J(u, x) = 

subject  to  linear 

the  state  regulator  problem of minimizing  the  quadratic 

2 ([x , Qx] .’ [u , Ru] ) 
dynamical  system  constraints 

where Q, R, A, B are constant  matrices on T , Q 2 0 , R > 0 , and  the 
pair (A, B) is completely  controllable.  A  computational  solution  to  this 

67 



problem is now formulated by Approximation  in X , using  the  methods  described 
in  the  sections,  The  Inverse Mapping,  and A Second Variation Method for 
Approximation  in X . 

Since  the  cost  functional is a true  quadratic  and  the  system is linear 
in x and u , the  differential is also  l inear  in x and u . Therefore, as 
shown  below,  equations (103) through (1 1) may  be  solved  exactly  in a single 
iteration.  Consequently, we shall  replace 6u and 6x by u  and x , respec- 
tively,  and  derive  the  Accessory  Problem  for  this  special case. By means of 
the  inverse  mapping  defined by equation (941, the  cost  functional  may  be 
expressed  explicitly  in  terms of the state function.  Since B'$ B > 0 for all 
t E T  , the  parameter E may  be  chosen  zero.  Then  the  cost  functional  may 
be  written as 

J ( - , X ) = ~ ( [ X , Q X ] +  2 

where 

B+ 

A necessary condition  for a weak minimum of J over  the state space X 
is that its first Frechet  differential at x  with increment ( vanish. By 
performing  the  same  steps as used  in  equations (103) through ( i l l ) ,  w e  
obtain  the  following  linear  second-order  differential  equation 

where 

and subject  to  the "self adjoint''  boundary  conditions 

x(t0) = c 

h ?(ti) hAx(t1)  . 
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After  solving  equations (119) through (122) for  x and i , the  optimal  control 
function u may  be  recovered,  using  the  inverse  mapping, as A 

For  the  solution of the  Accessory  Problem,  equations (119) through (122) , it 
is convenient to consider  the two cases: (1) h > 0 ; and (2)  h 1 0 . When 
applicable,  the-solution  for  Case 1 is easier to  implement. In the  following, 
we  shall  obtain  closed-loop  control  functions by using  the  Riccati  transforma- 
tion. In Appendix By both  open  and  closed-loop  control  functions are obtained 
for the  more  general  problem of the  section,  Definition of the  Optimal  Control 
Problem,  Chapter 2 .  

CASE I: h > 0 

Since  R > 0 , the  condition  h > 0 implies  that  the  Euclidean 
dimension of the  control  space U and the  state  space X is equal;  that  is, 
dim U = dim X . Consider  the  Riccati  transformation 

where PI is an  n x n  matrix  whose  elements  are  functions on T . By 
substituting  in  equation (119) for i and X using  equation (124) , w e  find  that 
Pi satisfies the  following matrix  Riccati  equation: 

From  equations (123) , (124)  and (117) ,  the  optimal  control  for  this  case is 

where P, is obtained by solving  equation (125).  

CASE 2. h 2 0 .  

The  condition  that  h 2 0 implies  that  dim U 5 dim X . Let 
equations (119) through  (122)  be  rewritten as the  following  pair of first-order 
vector  differential  equations: 

x = A**x + A" X 
. a  a b 
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where 

a b x = x =  (Xi,. . . ,xn)  y x = k =  (x n+i Y - * - Y X2J 

x = i  i = i ,  2, . . .  , 2 n - i  
i+i i y  

with boundary  conditions 

x (to) = c 
a 

a b c x (ti) = x (tl) . 

Matrices A , C are n x n  with elements  that are constant on T . Consider 
i j  

the  Riccati  transformation 

where P, is n x n  and  has  elements  that are functions  on T . By using 
equation (131) in  equations (127) through (130) we obtain  the  following  matrix 
Riccati  equation: 

Having  obtained P, by solving  equation (1321, the  closed-loop  optimal  control 
for  this  case is obtained  from  equations (1231,  (131) , and (117) as 



EXAMPLE 12 

Consider the minimization of 

I 
J(uy x) = (xz+ 7 i u2)dt 

0 

subject to the  first-order linear system 

i 
2 

x = - -  x +  u y x(0) = i . (135) 

Using  the  methods  described for the state regulator  problem of this  section, 
the  Accessory  Problem is 

.. 9 
4 

x =  - X 

x(0) = i (1  37) 

I 
2 k ( i )  = --  x ( i )  

Since  h = 1 is positive,  Case 1 of this  section  applies.  Solution of equations 
(136) through (138) by the  Riccati  transformation  x = P ( t ) x  results in  the 
Riccati  equation 

The latter equation  may  be  integrated  backward by replacing  the  independent 

variable t by -s and  letting - = - 

and  integrating, w e  obtain 

d P  
dt d s  

- dP . Then by separating  variables 

P =  - coth (- Tt + t i )  , 3 3 
2 

71 



1 
2 '  where is adjusted  such  that P(1) = - - Hence, from equation (126) , 

the  optimal  control is 

I 3  coth (- $t + ti))x . 

To check  the  validity of the  solution  just  obtained, we employ  the 
standard  method  for  solving  such  problems as described  in  the  section,  State 
Regular  Problem,  Chapter 2. The  Riccati  equation (47) is 

G = P +  P 2 - 2  , P(1) = 0 , 

which has a solution 

P = - - + coth (- + t  + I , )  , 1 
2 2  

where t 2  is adjusted  such  that P(1) = 0 . Therefore,  the  optimal  control 
is 

which is identical to equa-tion (140).  

EXAMPLE 13 

Gi:len the  quadratic  cost  functional 

and the second-order  linear  system 



k2 = - x i  -x2+  u x2(0) = 0 

w e  seek  the  optimal  control by  Approximation  in X . 
A necessary  condition for a minimum of J in X is given by the 

system of equations ( l i 9 ) ,  ( 1 2 f ) ,  and (122) which for this  problem is 

0 = k2 + 2x1 + x2 

x2= -&I + xi + x2 Y 
.. 

where 

x2(0) = 0 

X i (  0) = 1 

i(2( I) f X i (  I) + x2( I) = 0 

For the  preceding  boundary  value  problem t h e  matrix 

from  equation (120)  is  positive  semidefinite.  Thus,  Case I1 of this  section 
:~pplies  and  equations (144) through  (148) are  written as 

a b 
where x = ( x l ,  x2) ~ x = (2, ~ G 2 )  . and 
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"1 

subject  to  the  boundary  conditions 

xa(o) = ( i f  0) 

b  a x ( i)  = cx ( I )  , 

where 

c = (-; -;) . 
Equations (149) through (151) may  be  solved on the  finite  interval T by 
using  the  Riccati  transformation  (the sweep method)  described  in  Appendix B. 
The  optimal  control is given by equation (1331, where  elements of the 2 x 2 
mat r ix  P2 satisfy  equation (B. 23) ,  which resul ts   in   the following  equations: 

Equations (144) and (145) correspond  to a single  fourth-order  equation  in 
x1 for which a solution  can  also  be  obtained by the classical  Laplace  trans- 
fo rm method.  The  procedure is straightforward;  however,  evaluating  the 
residues  at  the  poles si, i=i, 2, 3, 4 is very  tedious  since  the  initial  values 
of El and El are not  specified.  A  computer  algorithm for evaluating  the 
inverse  transform would be  helpful.  Unfortunately,  the  solution  does  not 
exist on the  infinite  interval [ 0, m ]  since  the  system  possesses  poles  in  the 
right-half  complex  plan 
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CHAPTER 5 

CONCLUSIONS  AND  RECOMMENDATIONS 

Few classification  schemes are perfect  since  there is usually  overlap, 
and  membership  in a single  category is often  fuzzy.  However,  the scheme 
given  in  this  report  appears  to  be  logical  and  easy to apply.  Most of the well- 
known computational  methods for optimal  control  belong to one of the  categories, 
including steepest  descent,  quasilinearization,  boundary  condition  iteration, 
and  the  "direct"  second  variation  method.  The  classification  provides  geometric 
insight for the  design of new algorithms, as evidenced by the  second  variation 
method for Approximation  in X . 

The  conjugate  direction  algorithm for Approximation  in X"' requires a 
moderate  amount of instructions and  computation.  The  method  inherits all 
the  advantages of the  particular  quasi-Newton  method which is employed, 
including  rapid  and  stable  descent  to  a  minimum. In contrast,  methods 
involving  the  Newton-Raphson  method  may suffer  from  ill  conditioning of the 
Jacobian  matrix and  unstable  descent,  in  addition  to  the  difficulty  in  estimating 
second  partial  derivatives of the  cost  functional by divided  differences. 

The  monotone  convergence  algorithm  for  Approximation  in U requires 
a modest  amount of instructions  and  computation,  even  for  high-order  systems. 
Numerical results indicate  that  the  algorithm is preferable  to  existing  techniques, 
including  Runge-Kutta  integration of the  Riccati  equations or the  "Automatic 
Synthesis  Program"  (ASP). In the  latter  two  methods,  convergence is l inear,  
whereas  in  the new method  convergence is both monotonic  and  quadratic. 

The  second  variation  algorithm  for  Approximation in  X requires a 
large  amount of instructions  and  computation.  However,  the  transition  matrix 
approach  offers  the  advantage  that  only  functions  evaluated  at  the  terminal  time 
are  saved between  control  updates.  For  probl(>ms  in which the  Euclidean 
dimension of the  control  space U is less than  that of the  state  space X , 
storage  requirements are less than former  second  variation  methods.  Solution 
of the  Accessory  Problem by the  sweep  method, on the  other  hand,  requires 
nearly  the  sa'me  amount of computation as former  techniques. 

Future  research  in  the area of this  report  should  concern  extending 
the  algorithms  for  Approximation  in X and  Approximation  in U to  handle 
terminal  equality  constraints on the state with unspecified  terminal  time. For 
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the  second  variation  method, it  is expected  that a slight  redefinition of the 
Hilbert  space  inner  product as in  Reference 10 would be  needed  for  the 
latter  purpose.  Further  consequences of the  inverse  mapping  should  be 
investigated  for  high-order  time-varying  systems by application of the 
algorithm  to  physical  problems. 

Further  research  should  involve  the  application of the  algorithms  to 
constrained  nonlinear  problems. A t  present  there are a number of methods 
for  handling  constraints  that  restrict  elements of the  spaces U and X to 
closed  subsets of Hilbert  space [44]. Among  these are ( I )  methods of 
feasible  directions  such as the  "projected  gradient  scheme" ; (2) penalty 
function  methods; (3)  methods of set approximation  such as the  Ritz  method; 
(4) duality  methods  such as the  "moment  methods"  based on the  Krein 
L-problem  and  also  methods  based on the Kuhn Tucker  conditions; (5) nieth- 
ods of optimal  evolution  including  the  well-known  Dynamic  Programming 
technique.  Methods (3 )  and (4) appear  to  be  most  promising  for  futul-e 
development. 
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APPENDIX  A 

SOLUTION OF THE LINEAR,EQUATION 

In this  section w e  consider  the  computational  solution of the  linear 
differential  equation  that was  obtained by application of the  method fo r  
monotone  Approximation  in U . 

Suppose  A, B, Q,  R , are constant  matrices,  and ti - + m . 
Consider a translation of the time origin  such  that to = 0 . Since  A (k) is a 
stability  matrix  (that  is,  the  system  equation (67) with  the  control  function 

defined by equation (71) is asymptotically  stable),  lim P(k)  (t) = 8 , and 

w e  may  obtain  the  optimal  control  approximation  from  equation (71) by 
solving  the  linear  matrix  equation 

t" w 

where  A (k) and Q (k) are given by equations (73)  and (74), and 

Then  equation (A.  1) may  be  written as in(n+l)  linear  algebraic  equations 
whose  solution is 

where 
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and D (k’ is an  in(,+ 1) x gn(n+ 1) constant  matrix  whose  elements are 

linear  combinations of elements of A (k’ . For example, 
is as follows: 

D ( k )  

0 0 

0 ( k )  
a23 

0 2a ( k )  
23 

if n = 3 , D  (k) 

\ 

I 

For the  finite  interval case, t, - 

and Q (k’ are functions on T . Let us  consider  the  following  expansions: 

to < 00 and  the  elements of A ( k) 

t)  

t ) ”  

(A. 4) 

where P ‘ k ) .  A ( k ’ ,  and Q (k’ are  constant  n x n  matrices.  Substituting 

t h e  latter  expressions for P ~ A (k)  ~ and Q (k’ into  equation (72) 

;!nd eq!l:lting coefficients of ( t ,  - t)  . n = 0. 1. 2: . . . . we obtain  the 
follo\\ing set 01‘ equations: 

n n 
(k) 

n 

T H  



Equation (A. 6)  may  be  solved  recursively  for  each  value of k and provides 
one  means  for  solving  the  linear  matrix  differential  equation  (72).  Motivated 
by this result, a similar approach w a s  used  to  generate  simple  optimal test 
problems and is described  in Appendix C. 

In the  general  case of time-varying A, By Q, or  R , equation  (72) 
must  be  integrated  numerically  using a digital  computer.  Note  that  equation 

(72) is integrated  backward  from  the  final  condition P(k) (tl) = 0 . 
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APPENDIX B 

SOLUTION OF THE ACCESSORY  PROBLEM 

For  the  computational  solution of the  boundary  value  problem,  equation 
(103) through (Ill), it is convenient  to  consider  the  following two cases: 
(I) h > 0 ; (2) h 2 0 and L > 0 . When  applicable,  the  procedure 

uu 
described  for  Case I is easier  to  implement  and  requires less computation. 

Case 1. h > 0 

TRANSITION MATRIX APPROACH 

Let  us  rewrite  equation (103) as the  following IR -valued system of 
2n 

equations: 

6i =S6z + W  

where 

and  subject  to  the  boundary  conditions,  equations (108) and ( l o g ) ,  

The  solution  to  equation (B. 1) can  be  written  in  terms of the  initial condition's 
6x(to)  and &(to) a s  
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where dj (t, t,,) are n x n submatrices of the  transition matrix for the linear 
system [ eq. (B. I)  I ,  62 (to) is unknown, and 6; , 62 , represent  the unknown 
"forced  solutions" of equation (B. I ) .  Evaluating  equation (B. 5) at t = ti and 
using  equations  (B. 2) and (B. 3 ) ,  we obtain 

i j  

N 

, t o )  6ll(t,) = M t i )  - 62(6)  

If w e  can  determine 6; (ti) , 6; (ti)  and @ (ti , to) , i = 1 , 2  , the 
missing  initial  condition 62 (to) is specified by equation (B. 7) .  A procedure 
for  computing  these unknown functions is as follows.  Let  6x( to) = 62 (to) = e 
in  equation (B. 1) . Then 6; (t) = 6x( t) and 6; (t) = 62( t) . By integrating 
equation  (B. 1) with these  initial  conditions  until t = ti , w e  obtain  the  "forced 

solution" 6%( ti) . To compute  the  submatrices @ (ti , to) , i = 1, 2,  let 
k = 8 in  equation (B. I)  so that  the  Ifforced  solutions  in  equations  (B. 4) and 
(B. 5) are  zero.  Then by integrating  equation (B. 1) with  the  initial  conditions 
6x(to) = f3 and 2(to) = {Alj  , A , . . . , An$ , where A . .  is defined by 

i j  

i j  

1.l 

A..  = 
1 , i = j  

11 0 , i Z j  ' 

the  jth  column of @ (ti , to) is obtained. By repeating  this  procedure  for 
j = 1, 2, . . . , n , w e  obtain  the last n  columns of @ (ti , to) as required. 

A total of 2n(m + 2) differential  equations  must  be  integrated  where 
m = rank  h . Existence of the  inverse  in  equation (B. 7) is insured by the 
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absence of conjugate  points  in  the  interval T 145: 461 and,  together  with  the 
strong  Legendre  condition h 0 constitutes  sufficient  conditions  for a solu- 
tion to the  Accessory  Problem.. 

THE: S W E E P  hlETHOD 

Alternativelyt  boundary  value  problems of this  type may be  solved 
by the  sweep  method 161. Consider  the  inhomogeneous  Riccati  transformation 

62 = P,6x + ql Y (B. 8 )  

where P, is an n x n matrix,  and  q, is an IR -valued  function. I t  is 
sufficient  to  assume  that  elements of P, and  q1 are real-valued  continuous 
functions on T . Then 

n 

= he* (F6 ir + G6x + k )  

In the last s tep w e  have  used  equation (103). Thus,  the  following  equations  for 
the  "backward  sweep" are obtained: 

During t h e  "forward  sweep" we must  integrate 

to obtain i)s on T . From  equations (94) and (B. 8) the  control  increment 
mav be c~.\;pressed  in terms of the  state  increment as follows: 



where  the "feedback"  and  "feedforward''  gains are, respectively, 

v '1  = g e ( P ,  - 
fX' 

(B. 13) 

Existence of a solution  to  equation  (117) is insured by the  conjugate 
point  condition,  16,451. In contrast  to  Riccati  equations  encountered  in  the sec- 
tions,  State  Regulator  Problems,  Chapter 2, and  Methods  Based on the Second 
Variation,  Chapter 3 ,  P, in  equation (B. 9) is not  necessarily  symmetric,  and 
hence  n(n+2)  equations  must  be  integrated  to  obtain 6u . In  comparison, 
the  Riccati  transformation  for  the  second  variation  method  described  in  the 
section,  Descent  Algorithms  for  Hilbert  Space,  Chapter  3,  results  in  tn(n+ 9) 
equations 

Case 2. h 2 0 a n d  L,, > 0. 

In this case equations (103) through  (11)  may  be  written as the IR - 
2n 

valued  system of linear  equations 

(B. 15)  

a b 
where 6x = ( 6x1 , . . . , ax-) , 6x = ( 6xn+ , . . . ; 6x satisfy 

. I  2n 
6X. = 62. i = 1: 2 ,  . . . 2n - 1 with boundary  conditions 

1 +  1 1 )  

Notice  that by definition dx = fix and dx --- 62 . Matrices A , C , D 

and da ~ d are n Y n  and  n x 1 , respectively, with elements  that are 
functions  on T . It is   assumed  that   D(tl)  is invertible. 

a I., i j  

b 
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.. ...- . . 

TRANSITION MATRIX APPROACH 

In  analogy  to  Case 1 let 

where @ (ti , to) are n x n  submatrices of the  transition  matrix  for  the 
linear  system  equation (B. 15) . Combining  equations (B. 18) , (B. 16) , and 
(B. 17), w e  obtain 

i j  
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The  linear  system  equation (B. 15) , together with initial  conditions  in 
equations (B. 16)  and (B. 17) , constitutes  an  initial  value  problem,  which, 

if the  inverse exists, may  be  integrated  forward to obtain 6x and 6x on T . a b 

Existence of the  inverse  in  equation (B. 20) is insured by the  absence of 
conjugate  points  in  the  interval T [45,461  and,  together  with  the  strong 
Legendre  condition L > 0 , represents  sufficient  conditions  for a solution 

to the  Accessory  Problem. 
uu 

SWEEP METHOD 

Consider  the  following  inhomogeneous  Riccati  transformation: 

b a 6x = P26x + q, 9 (B. 21) 

where P, is an n x n matrix on T , and q2 is an IR -valued  function 
on  T . Then 

n 

b a a si = P,sx + P26k + s12 

= G26x + P2 Aii6x + A,, P26x + q2 + da + h;! a  a a 
(B. 22) 

= AZi6xa + AZ2 P26x a + q2 + da , 

where we have  used  equations (B. 21) and (B. 15) .  Thus  the  following  equations 
for  the  "backward  sweep" are obtained: 

During  the  "forward  sweep'' w e  must  solve 

sia = (Ai i  +Ai2P2) 6xa  +Ai2q2 + d , 6x ( t o )  = 0 
a  a (B. 25) 
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Having  obtained  the LR -valued  function 6x , the  control  increment is 
n a 

6u = Y26x + z2 Y (B. 2 6 )  

where  the  "feedbacktT  and  "feedforward"  gains are, respectively, 

Y2 = gE (Aii + Ai2P, - fx) (B. 27) 

Existence of a solution  to  equation (B. 2 3 )  is insured by the  conjugate  point 
condition [45 ,6] .  Since AI2 and A'' are not necessarily  symmetric,  

n (n+  2 )  equations  must  be  integrated  to  obtain 6x = 6x . a 
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APPENDIX C 

A CLASS OF STATE  REGULATOR PROBLEMS 
FOR TEST1  NG COMPUTATIONAL  ALGORITHMS 

This  section  describes a class of simple  first-order  time-varying 
dynamical  systems  and  the  optimal  solution with respect to  quadratic cost as 
specified by the  Riccati  solution of the  section,  State  Regulator  Problem, 
Chapter 2. These  problems  have  been  designed  to  provide a c lass  of simple 
problems with nontrivial  closed-form  solutions  for  the  testing of computational 
algorithms  and are based on Reference 47. 

The  system  dynamics are assumed to be modeled by a linear first- 
order  differential  equation, 

where A is a continuous  function  on [ O  , tll that wi l l  be  determined; 

x EL, (T)  and u EL, (T)   a re   the  state and  control  functions,  respectively. n  n 

The  cost  functional is 

ti 
J(U , x)  = 3 J (&x2 +u2)  dt Y (C. 2) 

0 

where Q is a continuous  function [ O  , ti] which w i l l  also be determined. 
From  the  section,  State  Regulator  Problem,  the  optimal  feedback  solution  to 
equations (A. 1) and (A. 2 )  is 

A u = - P x  9 

where P satisfies the  Riccati  differential  equation 

-fi = 2 P A - P 2 + Q  (C. 4) 

with  boundary  condition P( tl) = 0 . Equation  (C. 4) must  be  solved  in 
reverse  t ime  start ing with  the  boundary  condition  and  integrating  backwards. 
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Example 1 
Let a , qn , p be  constants  and  suppose  that 

n 

2 
Q(t)= - t I n  

n=O 

By substituting  equations (C.  5) and (C. 7) into  equation (C. 4) and  collecting 

coefficients of (tl - t) , n = 0 ,  1, . , . we obtain  the  following  constraints 
on our  choice of system  parameters: 

n 

Hence,  given  the  system  equations (C.  I )  and (C. 5 ) ,  equations (C. 2) and 
(C .  6) specify  the  cost  functional f o r  linear  feedback.  For  example,  suppose 
that 

Then a,, - -  - 1 , af = 4 . If pI = 1 , q, = 1 , then  from  equations 
IC. 9) and (C.  10)  we  find  that  the  controlled  system is specified by 

x = ( -1  -$CG - t ) ) X  (C. 12) 

P" 
u - - g t l  - t ) x  (C.  14) 



Example 2 
Let a n '  %"n be constants  and  suppose  that 

Substituting  equations (C. 15) through (C. 17) into  equation (C. 4) and  collecting 

coefficients of e 
constraints 

na (ti - t) , n = 0 ,  1, . . . we obtain  the  following 

(C .  18) 

(C.  19) 

(C. 20) 

In addition,  since P(tl) = 0 , 

Po + PI = 0 (C.  21) 

Equations (C.  18) through (C. 21) specify  the  requirements on our  choice of 
cost  functional  equation (C.  16) for  the  system  equation ( C .  15) and control 
in  terms of equation (C.  17) .  For  a < 0 and  ti - + 00 the  optimal  control 
w i l l  approach  that  for  the  constant  coefficient  system 

i = aox + u (C.  2 2 )  

00 

J(u, X )  = 1 (qox2 + U2)dt 
0 

(C.  2 3 )  
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Example 3 
Let an, %, p be constants  and  suppose that n 

A = a. + % e  

Q = 40 + 4le + 92e 

at 

at 2 a t  

P = po + & e  
at 

(C. 26) 

Substituting  in  equation  (C. 4) and  collecting  coefficients as above, we obtain 

(C. 28) 

(C. 29) 

Consider  the  case of infinite  time  interval [ 0 , and a = -1 . 
Moreover,  suppose  that 

a. = 1 40 = 0 41 = 3  Po = 0 

Then  the  optimal  solution is characterized by 

i = ;(a + u  
A 

A 
u = - e  x -t 

90 

(C. 31) 

(C. 32) 

(C. 33) 

(C.  34) 



It is interesting  that  the  dynamics of the  closed-loop  system  are 

2 = + (+ - e-t)x t (C. 35)  

an optimal  system which becomes  unstable  within  one  second!  Another 
example  for  this  case is generated by the  following  choice: 

1 3 a. =z 9 0  = 0 e = 5 Po = 0 

a, = $  q 2  = 0 p1 =I 

for which  the  optimal  system is characterized by 

A 2 = + ( -z  1 + e-t)x + u 

3 -t 
2 Q ( t )  = - e 

p(t) = e -t  

u = - e  x A -t 

Example 4 
Let 

A( t )  = a. + a, sin ot + a, cos ut 

Q ( t )  = go + q, s in   u t  + q2 cos w t  + 93 sin  2ut + 44 cos 2wt  

p ( t )  = po +pi sin ut + pz cos ut 

The  resulting  constraints  are  obtained  as  follows: 

(C. 3 6 )  

(C. 37)  

(C. 38) 

(C.  39) 

(C. 40) 

(C. 41) 

(C. 42) 

(C. 43) 
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%P2 +%Pl + %  +PIP2 = o  ( C ;  46) 

-%Pi +%pz + Q  + g p f  -& = o  (C.  47) 

po + pi sin utl + p;! cos ut, = 0 (C. 48) 

Equation (C. 43)  through ( C .  48) may  be  used  to  generate  optimal  test 
problems, as in  the  previous  example. 

Example 5 
Let a , , p  be  constants  and  suppose that n 'n n 

00 

A ( t ) =  a e 
n =O 

n a t  
n 

00 

P ( t ) =  pne 
n a t  

n =O 

(C. 49) 

(C. 50) 

(C.  51) 

The  constraints on a and  q are obtained by substituting  equations (C.  49) 

through (C.  51) into  equation (C. 4).  Thus 
n  n 

Po = 0 

(C.  5 2 )  



I 

where  the  terminal  constraint po = 0 has  been  combined  with  equation  (C. 51) 
to  yield 

Example 6 
Let a be  constants  and  suppose  that n' 'n, 'n 

A ( t ) =  a tn 
n=O n 

Q ( t ) =  q  n tn 
n=O 

(C. 53) 

(C. 54) 

(C. 55) 

(C. 56) 

In a similar  manner w e  obtain  constraints on a and  q  in  the form of the 
recursion  relations: n  n 

Po = 0 Y 

(C. 57) 

which may be used  to  generate  optimal  solutions  to the problem. 

George  C.  Marshall  Space  Flight  Center 
National  Aeronautics  and  Space  Administration 
Marshall  Space  Flight  Center,  Alabama, 35812,  Sept.  15,  1970 
125-17-05-00-62 
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Boundaryvalue  problem, 21, 31, 62, 63 

Computational  algorithms 

in  Euclidean  space, 16 

conjugate  gradient, 19 

Newton-Raphson, 18 

quasi-Newton, 19 

steepest  descent, 17 

in  Hilbert  space, 20 

Approximation  in X , 3, 54 

Approximation  in X" , 3,  23, 24 

Approximation  in U , 3,  23, 29 

boundary condition iteration,  23, 24 

conjugate  gradient, 29 

quasilinearization, 23 

second  variation, 29 

steepest  descent, 23 

Computational  methods 

in  Euclidean  space, 16 

conjugate  direction,  19 

first  order, 17 

second order,  18 

in  Hilbert  space, 20 

first  variation, 20 

second  variation, 29 

Conjugate  point 

conditions for  absence  of, 83,  85 

Constraints 
dynamical  system, 8 

terminal  equality, 8 

Convergence 

in norm, 6 

monotone, 41 

quadratic, 19, 47 

Differential 

Frechet, 6 

Gateaux,  6 

Equation ( s )  

adjoint, IO, 21 

canonical, 22 

Hamilton-Jacobi, 42 

Riccati, 14, 32 

sensitivity, 25,  36, 37 

state, 8 

Function 

adjoint, 10 

admissible,  8 

control, 8 

state, 8 

Functional 

cost, 8 

Hamiltonian, 21, 41 
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INDEX (Continued) 
Functional (Concluded) 

Lagrangian, 10 

Lyapunov, 43 

minimum  cost,  44, 40 

quadratic,  13 (see Optimal  control  problem, 
linear-quadratic) 

Gain 

feedback,  83, 86 

feedforward, 83, 86 

Gradient, 16 

Hessian, 18 

Increment 

adjoint, 31 

control,  8, 29 

state, 8, 29 

Inner  product, 5, 

Inverse 

€-pseudo, 55 

matrix, 6 

pseudo, 55 

Jacobian,  18 

Jacobi condition (see Conjugate  point, condition for) 

Lagrange  multipliers (see Function,  adjoint) 

Least  squares solution, 55 

Legendre  condition, 82,  85 

Mapping (see  Operator) 

bounded, 5 

contraction, 23 

inverse, 54 

Maximum  principle,  3, 41 

Min-H requirement, 22 

Minimization 

accessory  problem, 30,  80 

one-dimensional,  16 

Minimizing  sequence, 7 

Minimum 

necessary conditions for, 9, 21 

strong, 6 

weak,  6 

Norm, 5 

Operator (see Mapping) 

adjoint, 5 

differentiation, 6 
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Optimal  control  problem 

abstract  form, 3 

nonlinear, 8 

INDEX (Concluded) 

state  regulator, 13 

Residual, 55 

Riccati  transformation, 14 

Space 

control, 8 

dual, 5 

Euclidean, 5 

Hilbert, 5 

state, 8 

Stability,  asymptotic, 44 

State  regulator  problem (see Optimal  control  problem) 

Sweep method (see  Riccati  transformation) 

System 

dynamical, 8 

linearized, 9 

Transition  matrix, 9 
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conducted so as to  contribute . . . to  the  expansion of huntan knowl- 
edge of phenonlena in  the a t ~ o s p h e r e  and  space. The  Administration 
shall provide  for  the  widest practicable and appropriate  dissemination 
of inforwation concerning its activities and the results thereof!' 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 I I 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

'fECHNICAL  REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL  NOTES:  Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL  MEMORANDUMS: 
Information  receiving  limited distribution 
because of preliminary  data, security classifica- 
tion, or other reasons. 

CONTRACTOR  REPORTS: Scientific and 
technical information  generated under a NASA 
contract or.grant and considered an  important 
contribution to existing  knowledge. 

TECHNICAL  TRANSLATIONS: Information 
published in a foreign language considered 
to merit  NASA  distribution  in English. 

SPECIAL PUBLICATIONS:  Information 
derived from or of value to NASA activities. 
Publications include conference  proceedings, 
monographs,  data  compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY  UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA  that may be of particular 
interest in commercial and  other non-aerospace 
applications.  Publications  include Tech Briefs, 
Technology Utilization Reports  and 
Technology Surveys. 

Details on the availability of these publications may be  obtained  from: 

SCIENTIFIC  AND  TECHNICAL  INFORMATION  OFFICE 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. PO546 


